antioxidantsgroup

Plant ROS Research

FUNCION DEL ASCORBATO EN LA PROTECCIÓN DE LA FOTOSÍNTESIS: (I) La reacción de Mehler y el ciclo agua-agua

2 comentarios

José A. Hernández Cortés y Pedro Díaz-Vivancos (Grupo de Biotecnología de Frutales, CEBAS-CSIC)

El ascorbato (ASC, también llamado Vitamina C) es una molécula multifuncional en las plantas. La mayoría de las funciones biológicas del ASC derivan de su capacidad para actuar como un agente reductor (es decir, que cede electrones a otras moléculas). Esta capacidad hace del ASC una molécula antioxidante muy eficaz.

Además de su papel como antioxidante, el ASC puede participar en otras funciones, como en el desarrollo celular, en la síntesis de la pared celular, modula la síntesis de algunas fitohormonas (ácido abcísico, giberelinas, etileno, ácido salicílico), participa en el control del movimiento de los estomas (https://cienciacebas.wordpress.com/2013/12/12/regulacion-del-cierre-estomatico-una-funcion-representada-por-varios-actores/), interviene en la acumulación de antocianos durante la aclimatación a alta intensidad luminosa, etc…

Sin embargo, en esta entrada vamos a centrarnos en la función(es) del ASC en el cloroplasto como un protector de la maquinaria fotosintética.

Función antioxidante del ASC en el estroma del cloroplasto

El ASC, junto con el glutatión (https://cienciacebas.wordpress.com/2013/04/03/glutation-una-molecula-para-todo/), participa en la eliminación de especies reactivas del oxígeno (ROS) en el denominado ciclo agua-agua (Asada 1999). Este ciclo comienza con la denominada reacción de Mehler. La reducción del oxígeno molecular (O2) hasta superóxido y H2O2 por los electrones de la cadena de transporte electrónico fotosintético en el PSI se denomina “Reacción de Mehler” (Mehler 1951) (Fig. 1).

Fig. 1. Reacción de Mheler. PS, fotosistema; SOD, superóxido dismutasa.

Fig. 1. Reacción de Mehler. PS, fotosistema; SOD, superóxido dismutasa.

Años más tarde, el profesor Kozy Asada describió el denominado ciclo agua-agua, esto es la fotorreducción del O2 hasta agua en el PSI empleando los electrones procedentes de la fotólisis del agua en el PSII (Asada, 1999, 2006). Este ciclo incluye la reacción de Mehler, es decir, comienza con la fotólisis de la molécula de agua en el PSII, la fotorreducción del O2 para producir radicales superóxido (O2.- ) en el PSI y la dismutación del O2.- hasta H2O2 por acción de la isoenzima Cu,Zn-SOD unida a tilacoides.

El ciclo agua-agua continúa con la reducción del H2O2 hasta agua por la acción de la enzima ascorbato peroxidasa (APX). Esta reacción puede ocurrir tanto en el tilacoide como en el estroma, ya que parte del H2O2 producido puede difundir al estroma del cloroplasto. En esta reacción, la APX usa el ASC como donador de electrones para reducir el H2O2 hasta agua generando radicales monodeshidroascorbate (MDHA).APX

A continuación, el MDHA generado tiene que ser reducido para regenerar el ASC. Esta reacción puede ocurrir de dos formas:

Bien puede ocurrir de forma espontánea vía ferredoxina reducida (Fdred) en el PSI,

Mono espontanea

o bien mediante la reacción de la enzima monodeshidroascorbato reductasa (MDHAR) en el estroma del cloroplasto:

MDHAR

Además, el MDHA puede desproporcionar directamente para producir ASC y deshidroascorbato (DHA), que puede difundir al estroma, donde es reducido hasta ASC por acción de la enzima deshidroascorbato reductasa (DHAR), en una reacción dependiente de GSH (glutatión reducido) generando glutatión oxidado (GSSG). A continuación el GSH es regenerado a partir de GSSG por acción de la enzima glutatión reductasa (GR) que emplea NADPH como poder reductor:

DHAR y GR

Como podemos ver en estas reacciones, el ciclo agua-agua proporciona aceptores electrónicos para el PSI, es decir, Fdox y NADP+.

Fig. 2 Esquema del Ciclo Agua-agua (desarrollado a partir del ciclo agua-agua descrito por Asada (1999).

Fig. 2 Esquema del Ciclo Agua-agua (desarrollado a partir del ciclo agua-agua descrito por Asada (1999).

En el esquema del ciclo agua-agua (flechas azul marino) podemos observar que la mitad de los electrones derivados de la fotólisis del agua en el PSII son utilizados para la reducción del O2 hasta O2.-, mientras que la otra mitad se emplean para regenerar las moléculas reductoras (el ASC) que se emplean para reducir el H2O2 hasta agua.

Funciones de la Reacción de Mehler y del ciclo agua-agua

La generación de ROS en el cloroplasto está influida por factores fisiológicos y ambientales, de modo que esta tasa aumenta cuando el flujo de intensidad luminosa está en exceso del requerido para la fijación de CO2 (Asada 1999, 2006). La fotoproducción y eliminación de ROS no sólo protege al cloroplasto de los efectos dañinos de dichos ROS sino que también actúa como una válvula de escape para el exceso de fotones. En este sentido el ciclo agua-agua cumple una serie de funciones de protección:

 

1.- Ajuste de la relación ATP/NADPH

El ciclo agua-agua (incluyendo la reacción de Mehler) proporciona un flujo lineal de electrones favoreciendo la generación de un gradiente de protones a través de la membrana del tilacoide, lo que permite la síntesis de ATP que no es consumido en el ciclo agua-agua (a esta producción de ATP se le denomina fotofosforilación pseudocíclica). Por lo tanto, permite un aumento del ratio ATP/NADPH en el cloroplasto. Una alta relación ATP/NADPH favorece la ruta fotorrespiratoria, por lo que podemos decir que el ciclo agua-agua aporta ATP adicional para la fotorrespiración.

2.-Protección frente a las ROS

Si el ciclo no fuese activo, tanto O2.- como H2O2 difundirían al estroma y oxidarían moléculas diana en el cloroplasto. En presencia de metales de transición (Fe, Cu), liberados de las proteínas, se podría catalizar la generación de radicales hidroxilo (.OH). La acumulación de H2O2 podría inhibir la APX en ausencia de ASC. La fijación de CO2 se inhibe hasta un 50% en presencia de 10 µM de H2O2 (Kaiser 1976). Además, el H2O2 es un inhibidor de las enzimas CuZn-SOD, Fructosa 1,6-bifosfatasa; Ribulosa 5 fosfato Kinasa, gliceraldehído-3-P- deshidrogenasa, sedoheptulosa 1,7-bisfosfatasa.

El radical O2.- inhibe enzimas que contiene grupos 4Fe-4S (como aconitasa o 6-fosfogluconato dehidratasa), mientras que los radicales .OH inhiben las enzimas glutamato sintasa y Rubisco.

3.- Disipación del exceso de fotones en condiciones de estrés

El ciclo agua-agua induce y mantiene la denominada “down-regulation” del PS II (una bajada de la actividad del PSII) mediante la generación de un gradiente de protones. Este gradiente de protones es importante para la formación de zeatina en el lumen de los tilacoides (este mecanismo lo veremos en una siguiente entrada “ciclo de las xantofilas” en el que el ASC tiene también una función importante).

Además, el ciclo puede disipar el exceso de fotones utilizando el O2 como aceptor de electrones generando H2O sin producirse la liberación de O2.- ni de H2O2 incluso si los aceptores electrónicos fisiológicos no están disponibles.

 

CONCLUSIONES

  • El ASC tiene un papel fundamental en la eliminación del H2O2 generado en la reacción de Mehler.
  • El ciclo Agua-Agua regenera aceptores electrónicos cono la Fdox y NADP+. Este último es el aceptor final preferido en la cadena de transporte.
  • El ciclo Agua-Agua genera ATP que puede ser utilizado en el Ciclo de Calvin-Benson o en la ruta fotorrespiratoria.
  • El ciclo Agua-Agua actúa como una válvula de escape permitiendo disipar el exceso de fotones en condiciones de estrés ambiental.

 

Referencias

Asada K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 50:601-639.

Asada K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396.

Kaiser (1976) Biochem Biophys Acta 440: 476-482.

Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys. 33:65-77.

2 pensamientos en “FUNCION DEL ASCORBATO EN LA PROTECCIÓN DE LA FOTOSÍNTESIS: (I) La reacción de Mehler y el ciclo agua-agua

  1. Pingback: La Fotorrespiración: Un mecanismo de protección para la fotosíntesis en condiciones de estrés ambiental | antioxidantsgroup

  2. Pingback: La Fotorrespiración: Un mecanismo de protección para la fotosíntesis en condiciones de estrés ambiental | cienciacebas's Blog

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s