antioxidantsgroup

Plant ROS Research

LA FOTOSINTESIS: ORIGEN

Deja un comentario

José A. Hernández 

La teoría de la evolución más aceptada de Oparin-Haldane, sugiere  que las primeras células eran heterótrofas y que evolucionaron en las condiciones de atmósfera reducida (ausencia de oxígeno) existentes en la Tierra en ese momento. Estos simples organismos heterótrofos eran unicelulares y sobrevivían a partir de compuestos orgánicos presentes en el fondo oceánico. A medida que la materia orgánica comenzó a agotarse, las células evolucionaron gradualmente de ser heterótrofas a autótrofas. Este cambio permitió a las células utilizar compuestos químicos o la luz solar para sintetizar su propia materia orgánica para nutrirse. Estos nuevos organismos necesitaban únicamente compuestos inorgánicos, como el CO2, y una fuente de energía externa que les ayudara a transformarlos en compuestos orgánicos, fundamentalmente azúcares. Los primeros organismos autótrofos empleaban compuestos químicos que encontraban cerca de las chimeneas volcánicas (fumarolas), como el H2S, NH3, el Fe2+ (quimiosíntesis). Hace unos 3.500-3.200 millones de años ya habían colonizado zonas situadas más cerca de la superficie y allí encontraron una nueva fuente de energía para fabricar sus nutrientes: la luz del sol. La fotosíntesis había nacido. Hace 2.800 millones de años un grupo de bacterias llamadas cianobacterias desarrolló la habilidad de emplear el agua como donante de electrones en la fotosíntesis para elaborar sus nutrientes. Y como consecuencia de su actividad, comenzaron a emitir a la atmósfera el gas más tóxico y letal que existe: el Oxígeno, que es en sí mismo un radical libre pudiendo aceptar electrones de uno en uno favoreciendo la aparición de especies reactivas del oxígeno (ROS). Para más información: (https://cienciacebas.wordpress.com/2012/10/23/origen-del-oxigeno-en-la-atmosfera-terrestre-un-necesidad-para-vivir-una-amenaza-para-los-organismos-vivos/), y https://cienciacebas.wordpress.com/2012/11/05/especies-reactivas-del-oxigeno-amigos-o-enemigos/.

Las cianobacterias, mediante un proceso de endosimbiosis,  fueron las precursoras de los cloroplastos, permitiendo la evolución del Reino Plantae. El reino de las plantas engloba tres grupos de organismos fotosintéticos: Plantas y Algas Verdes (Chlorobionta), Algas Rojas (Rhodophyta) y Glaucófitos (Glaucophyta). Los tres grupos poseen plastidios (cloroplastos) derivados de una endosimbiosis primaria, es decir, mediante la adquisición de un organismo procariota y la posterior reducción de su genoma. Estudios moleculares basados en genes plastidiales y en la organización genómica de los plastidios corroboran la monofilia de este grupo y relacionan los plastidios con las cianobacterias (Ruiz-Trillo 2012). Probablemente, el origen de los plastos primarios por endosimbiosis esté asociado estrechamente al origen del linaje Plantae. La endosimbiosis se define como una asociación interespecífica en el cual uno de los simbiontes reside en el interior (endosimbionte) del otro (hospedador).

Este hecho indicaría que la fotosíntesis tiene un origen único y común en los eucariotas. Estudios moleculares señalan el origen de las plantas verdes (Chlorobionta o Viridiplantae) en la era Precámbrica, hace alrededor de 1000 millones de años, si bien se han encontrado fósiles anteriores (de hace 1400 millones de años) que podrían ser atribuidos a ancestros de los clorobiontes (Pedroche 2012).

Podemos definir el término clorobionte [del griego khloros (verde claro) y bion (vivir)] como seres con núcleo (eucariotas), autótrofos fotosintéticos caracterizados por la presencia de plastos envueltos por una doble membrana, con tilacoides compactos, presencia de clorofila a y b y con almidón intraplastidial como producto de reserva, células móviles con la presencia de dos flagelos (Pedroche 2012).

Las plantas, como organismos sésiles autótrofos, son capaces de captar energía luminosa y convertirla en energía química, que será usada como fuente de carbono. Por lo tanto, el proceso de fotosíntesis se define como la síntesis de carbohidratos por parte de las plantas verdes o por organismos pigmentados usando CO2 y agua para liberar Oxígeno molecular (O2) en presencia de luz solar.

Imagen1

Gracias al proceso de fotosíntesis es posible la vida en la tierra, ya que la vida se basa en este importante proceso, de modo que sin fotosíntesis NO habría vida, al menos como hoy la conocemos. La importancia y relevancia de este proceso en la comunidad científica es tan obvio que ha habido 10 premios Nobel a investigadores en el área de Química que han contribuido a un mejor conocimiento de la Fotosíntesis.

Premios nobel fotosintesis

Representación esquemática que representa las contribuciones significativas de los premios Nobel del campo de la fotosíntesis. Fuente: Wungrampha  et al 2018

Richard Willstatter (1915): Purificó la clorofila a y b

Hans Fischer (1930): Identificó la estructura molecular de las porfirinas, estructuras compartidas entre la clorofila y la hemoglobina.

Paul Karrer (1937): Identificó la estructura química de los carotenoides, vitamina A y C.

Richard Kuhn (1938): Descubrió los α, β, y γ-carotenos.

Melvin Calvin (1961): Describió la ruta de fijación del CO2 (Ciclo de Calvin–Benson–Bassham).

Robert Woodword (1965): Sintetizó la clorofila, la quinina, el colesterol, la cefalosporina y la colchicina.

Peter Mitchell (1978): Descubrió el mecanismo quimiostático de la síntesis del ATP.

Rudolph Marcus (1992): formuló las reacciones de tasa de transferencia de electrones (Marcus theory).

Robert Huber, Hartmut Michael, y Johann Dissenhofer (1988): Cristalizaron los complejos colectores de luz y el centro de reacción en Rhodobacter.

Paul Delos Boyer, John Ernest Walker y Jens Christian Skou (1997): Descubrieron la ATP sintasa, enzima responsable de la síntesis de ATP.

           Las contribuciones de todas estas investigaciones hizo posible poder conocer mejor el proceso de fotosíntesis. Sin embargo, queda todavía mucho para entender mejor dicho proceso con el fin de mejorar su rendimiento y la producción de alimentos. Esto adquiere una especial importancia si pensamos que la población humana podría superar los 9000 millones para 2050 y que cada vez habrá menos suelo disponible y menos agua para cultivar. Se prevé que para ese momento (año 2050), además de más población, tendremos unos 50 millones de hectáreas menos para dedicarlas al cultivo debido a las condiciones medioambientales, incluyendo la mayor salinización de suelos,  menos disponibilidad de agua y la aparición de nuevas plagas, entre otros problemas.

Bibliografía

Wungrampha S, Joshi R, Singla-Pareek SL, Areek A (2018) Photosynthesis and salinity: are these mutually exclusive? Photosynthetica Vol 56 (en prensa).

Pedroche FF (2012) Clorobiontes. En: El Árbol de la Vida: Sistemática y evolución de los seres vivos. Pablo Vargas y Rafael Zardoya (Eds.) Madrid ISBN 97-84-615-9740-6.

Ruiz-Trillo I (2012) Eucariotas. En: El Árbol de la Vida: Sistemática y evolución de los seres vivos. Pablo Vargas y Rafael Zardoya (Eds.) Madrid ISBN 97-84-615-9740-6.

 

Jose A Hernandez Dic 2017RecJosé A. Hernández es Investigador Científico del Grupo de Biotecnología de Frutales (CEBAS-CSIC)

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s