antioxidantsgroup

Plant ROS Research


Deja un comentario

Desarrollo de un sistema electrónico “low-cost” para la medida de la fluorescencia de clorofilas en plantas

El grupo de Biotecnología de Frutales está participado de nuevo en la sexta Edición del Proyecto IDIES. El Dr. José A. Hernández (CEBAS-CSIC) ha trabajado en cooperación con el Dr. Juan Suardiaz (Profesor Titular del Departamento de Tecnología Electrónica, UPCT) y los alumnos del IES Alcántara, Jorge Parra García y Jordi Germán Calle León. Su tutora en el IES Alcántara fue la profesora Teresa de Jesús García.

El objetivo final del  proyecto fue el desarrollo de un sistema electrónico de bajo coste basado en Arduino, que permita detectar la emisión de fluorescencia de clorofilas y compararlo con un equipo profesional (IMAGIM-PAM, M-series, Heinz Walz, Effeltrich, Germany).

fluorimetro

caja 1

Arriba: Equipo IMAGIM-PAM, M-series, Walz. Abajo: Prototipo Low-Cost

Hemos comparado el prototipo fabricado (coste aproximado 100 €) con el equipo profesional (30000 €) en plantas sometidas a estrés salino. De forma cualitativa y cuantitativa, su funcionamiento es parecido al equipo profesional cuando las hojas se iluminan con luz roja (660 nm) e infrarroja cercana (850 nm), en relación con los parámetros de quenching no fotoquímico [Y(NPQ), NPQ y qN].

plantas C y 150 mm NaCl

Plantas de guisante usadas en el experimento

La respuesta que produce el equipo “Low-Cost” consiste en la propia fluorescencia de las clorofilas de las hojas. El equipo tiene luces led azules y rojas, cuyas ondas rebotan en las hojas y son de nuevo recogidas por un fotorreceptor colocado justo encima de la fuente de luz. Los datos de este receptor pasan al ordenador en una escala de 0 a 1023 bits, que son los datos que obtenemos, los cuales pueden ser transformados en µmoles de fotones m-2 s-1.

fluorescencia NaCl 150 mM

A la izquierda, resultados obtenidos con el Fluorímetro profesional, donde podemos observar un aumento de los parámetros de quenching no fotoquímico. A la derecha, los resultados numéricos (en bits) obtenidos con el prototipo low-cost.

En conclusión, este trabajo muestra como la técnica de fluorescencia de clorofilas es muy útil para valorar tanto situaciones de estrés abiótico como biótico, pudiendo analizar el efecto de dichos estreses en el cloroplasto, incluso antes de que se observen señales de síntomas en las hojas.

Estos resultados se presentarán en el VI Congreso IDIES, que se celebrará el próximo día 25 de junio de 2019 en el Palacio de Congresos Victor Villegas.

Anuncios


Deja un comentario

Efecto de compuestos nitrogenados en la germinación y metabolismo antioxidante de semillas de guisante

 

Alumnas: Patricia Navarro Parra, Sofía Macías Morillo y Raquel López Hernández.

Tutora: María José Nicolás (IES Floridablanca, Murcia

Responsables del CEBAS-CSIC: José A. Hernández y Pedro Díaz Vivancos Sigue leyendo


Deja un comentario

ACLIMATACIÓN DE PLANTAS DE STEVIA A CONDICIONES EX-VITRO Y ESTUDIO DE SU RESPUESTA A SALINIDAD

 

El Grupo de Biotecnología de Frutales ha conseguido micropropagar y aclimatar plantas de Stevia rebaudiana y estudiar su respuesta  a salinidad en macetas.

La Stevia es un edulcorante natural no calórico que posee una capacidad endulzante unas 300 veces superior a la sacarosa. La producción a gran escala de Stevia se ve limitada en primer lugar por la baja germinación de sus semillas. En este sentido, en nuestro grupo, hemos desarrollado un protocolo para multiplicar las plantas de Stevia en condiciones in vitro con el fin de obtener plantas clonales.

Enraizamiento de plantas in vitro y aclimatación a condiciones ex-vitro

Estas plantas, adaptadas a condiciones ex vitro (en macetas) se sometieron a estrés salino y comprobamos que desarrollaban mecanismos de adaptación para crecer con salinidades de 2 y 5 g/L.  Entre dichos mecanismos observamos adaptaciones fisiológicas relacionadas con el desarrollo, acumulación de iones y fluorescencia de clorofilas. Por otro lado, también tenían lugar una serie de adaptaciones a nivel bioquímico como cambios en enzimas antioxidantes, contenido de clorofilas y prolina (aminoácido implicado en la tolerancia a estrés salino). Estos cambios les permiten sobrevivir en dichas condiciones de estrés ya que les permiten un ajuste osmótico, una protección de la fotosíntesis y una defensa frente al estrés oxidativo provocado por la salinidad.

Control                         2 g/l                           5 g/l

Efecto de la salinidad en el crecimiento de plantas de stevia y en la fluorescencia de clorofila (de arriba a abajo, qN, qP y NPQ).

En lo que a la producción de esteviósidos, hemos descrito un aumento con la edad de la planta de los contenidos del esteviósido que tiene mejores características comerciales, el Rebaudiósido A, lo que puede tener un interés comercial. Además, observamos que la salinidad no afectaba de una forma significativa la concentración del Rebaudiósido A.

Este trabajo demuestra que es posible usar aguas salinas u otras fuentes alternativas, como aguas de depuradora, para crecer estas plantas así como para la producción de este tipo de edulcorantes naturales.

Stevia La Verdad

Equipo Investigador

 

Para más información

Daniel Cantabella, Abel Piqueras, José Ramón Acosta.Motos, Agustina Bernal-Vicente, José A. Hernández, Pedro Díaz-Vivancos (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115: 484-496. d.o.i.:10.1016/j.plaphy.2017.04.023.


2 comentarios

FUNCION DEL ASCORBATO EN LA PROTECCIÓN DE LA FOTOSÍNTESIS: (II) Los carotenoides y el ciclo de las Xantofilas

José A. Hernández Cortés y Pedro Díaz Vivancos (Grupo de Biotecnología de Frutales, CEBAS-CSIC)

Los carotenoides, además de servir como pigmentos accesorios, cumplen una función esencial en la fotoprotección de la maquinaria fotosintética. Los mecanismos de fotoprotección actúan como válvulas de seguridad, eliminando o liberando el exceso de energía antes de que pueda dañar a la planta.

Cuando la energía almacenada en las moléculas de clorofila en estado excitado se disipa rápidamente (mediante transferencia de excitación o fotoquímica) se dice que ese estado excitado está capturado (en inglés “quenched”) (Fig. 1). En castellano, el vocablo quenched significa apagado, aplacado, sofocado, calmado, extinguido, mitigado….. Si el estado de excitación de las clorofilas no es extinguido mediante transferencia fotoquímica (a través de la cadena de electrones) puede reaccionar con el oxígeno molecular (O2 ) y formar un estado excitado de esta molécula denominado oxígeno singlete (1O2) (Fig. 1). Esta forma activada del O2 puede reaccionar con cualquier componente celular, especialmente con los lípidos de las membranas celulares (Taiz y Zeiger 2010).

Los carotenoides ejercen su acción fotoprotectora mediante la captura del estado excitado de las clorofilas. El estado excitado de los carotenoides no tiene suficiente energía como para transferirla al O2 (por lo tanto no se forma 1O2), de modo que este estado excitado de los carotenoides decae hasta su estado fundamental perdiendo la energía en forma de calor (Fig. 1).

Fig 1 para ciclo X

Fig. 1.-  A: Condiciones donde toda la energía absorbida por la clorofila (Chl) es usada para la fotosíntesis. B: Condiciones de estrés lumínico donde sólo una parte de la energía absorbida por la Chl es usada para hacer fotosíntesis. En este último caso, para te la energía de excitación puede ser transferida al O2 para formar oxígeno singlete (1O2). El exceso de energía puede ser disipado de una forma segura en procesos fotoprotectivos en presencia de Zeatina a pH ácido en el interior de las membranas de los tilacoides con el fin de prevenir la formación de 1O2 . En este caso, la energía de la Chl excitada se puede usar para procesos fotoquímicos o bien se puede perder de forma segura en forma de calor. Modificado a partir de Demming-Adams y Adams (1996).

 

 

Se denomina quenching no fotoquímico (NPQ) a la captura de la fluorescencia de las clorofilas por procesos diferentes a los fotoquímicos. Gracias a los procesos de NPQ, una fracción importante de la energía de excitación de los sistemas antena causado por un estrés lumínico es capturado (quenched) y convertido en calor (Baker 2008). En este sentido, el NPQ está implicado en los mecanismos de protección de la maquinaria fotosintética cuando se produce una sobreexcitación, protegiendo de los posibles daños derivados. Los mecanismos moleculares del NPQ no están del todo dilucidados y se sugiere que hay varios procesos de quenching. El pH del lumen tilacoidal y el estado de agregación de los complejos antena son factores importantes. Además, se sabe que tres carotenoides, denominados xantofilas, están implicados en este mecanismo de NPQ: La violaxantina (V), la anteroxantina (A) y la zeaxantina (Z) (Taiz y Zeiger 2010).

En condiciones de alta iluminación (o debido a otro tipo de estrés que cause una limitación en la fijación de CO2 como la sequía o salinidad), la V es convertida a Z, pasando por el intermedio A, por acción de la enzima Violaxantina de-epoxidasa (VDE) en una reacción dependiente de ascorbato (ASC). A este conjunto de reacciones se le conoce como Ciclo de las Xantofilas (Fig. 2), implicado en la disipación del exceso de energía luminosa en forma de calor en las hojas.

Cuando el estrés desaparece o se reduce, el proceso se revierte (paso de Z a A). En este proceso se consume NADPH, generando NADP+, el aceptor final de electrones de la cadena de transporte. Por lo tanto, volvemos a encontrarnos con el ASC mediando una función protectora de la maquinaria fotosintética.

La unión de los protones y de la Z a las proteínas de las antenas colectoras de luz en los tilacoides, causan cambios conformacionales que conducen a la captura de energía y a la disipación en forma de calor (Demming-Adam y Adams 1992).

 

La deficiencia de ASC limita el ciclo de las Xantofilas

Como hemos comentado anteriormente, en respuesta a una alta intensidad luminosa (y a otros estreses, que pueden ir combinados), las plantas ponen en marcha mecanismos que les permiten disipar el exceso de luz absorbida en forma de calor. Uno de estos mecanismos es el NPQ, que requiere de la conversión de V a Z, por acción de la enzima VDE. Esta enzima se localiza en el lumen de los tilacoides, se activa a pH ácido (aprox 6.5, con una actividad máxima a pH 5) y necesita ASC como poder reductor (donador de electrones). Para comprobar la importancia fisiológica del ASC para el proceso de NPQ se han realizado experimentos empleando mutantes de Arabidopsis que contienen bajos niveles de ASC, como el mutante vtc, que contiene un 25% de los niveles de ASC que contienen las plantas silvestres. Cuando las plantas se crecen en presencia de una alta intensidad luminosa (1500 µmoles fotones m-2 s-1) los mutantes presentaron valores más bajos de NPQ, pero valores similares de ETR (tasa de transporte electrónico). Este menor NPQ era paralelo a una menor tasa de conversión de A a Z medido en tilacoides aislados. Cuando se aplicaba ASC a las hojas o a preparaciones de tilacoides se rescataba el fenotipo mutante, ya que se conseguía un aumento en NPQ y en los niveles de Z estableciéndose una unión clara entre ASC, Z y NPQ (Müller-Moulé et al., 2002).

 

Fig 2. Ciclo de las Xantofilas. Conversión de violaxantina (V) en zeaxantina (Z) en condiciones de estrés lumínico (o por efecto de otro tipo de estrés)  en una reacción dependiente de ASC. Cuando el estrés cesa, el paso de Z a V requiere NADPH generando NADP+, el aceptor final de la cadena de transporte de electrones.

Fig 2. Ciclo de las Xantofilas. Conversión de violaxantina (V) en zeaxantina (Z) en condiciones de estrés lumínico (o por efecto de otro tipo de estrés) en una reacción dependiente de ASC. Cuando el estrés cesa, el paso de Z a V requiere NADPH generando NADP+, el aceptor final de la cadena de transporte de electrones.

 

La susceptibilidad a estrés oxidativo mostrado por los mutantes deficientes en ASC se puede explicar no sólo por su reducida capacidad antioxidante sino también por presentar un ciclo de las xantofilas menos activo, reflejado por reducidos niveles de NPQ.

La relación ASC-NPQ también se ha demostrado empleando mutantes que sobreproducen ASC (mutante miox4), que presentan altos valores de NPQ (Tòth et al., 2011). Por otro lado, se ha demostrado también una función importante de la enzima deshidroascorbato reductasa (DHAR, enzima que recicla el ASC) en el proceso de NPQ, ya que la supresión de la expresión de esta enzima daba lugar a bajos valores de NPQ y a un aumento de los contenidos de especies reactivas del oxígeno (ROS) con tratamientos de estrés lumínico (Chen y Gallie 2008).

Conclusiones

El ciclo de las Xantofilas constituye un mecanismo de defensa para proteger a la fotosíntesis (y por tanto al cloroplasto) que permite la eliminación del exceso de energía en forma de calor de forma segura. La acción de este ciclo previene la formación de 1O2 evitando daños oxidativos. Como podemos comprobar, de nuevo el ASC es una pieza importante en el mecanismo de acción de este ciclo, ya que en su ausencia se produce un descenso en los procesos de quenching no fotoquímico (NPQ).

Referencias

  • Baker NR (2008) Annu. Rev. Plant Biol. 59: 89-113.
  • Chen y Gallie (2008) J. Biol. Chem. 283: 21347-21361.
  • Demming-Adam and Adams (1992) Annu. Rev. Plant Physiol Plant Mol. Biol. 43: 599-626.
  • Demming-Adam and Adams (1996) Trend in Plant Sci 1: 21-26
  • Müller-Moulé et al (2002) Plant Physiol 128: 970-977
  • Taiz y Zieger (2010) Plant Physiology, Fifth edition. Sinauer Associates, Inc. Sunderland, MA, USA. ISBN 978-0-87893-866-7.
  • Tôth et al (2013) Physiol Plant 148: 161-175.


Deja un comentario

Polyamines and response to salt stress in grapevine plantlets

  • José A. Hernández Cortés, Group of Fruit Biotechnology, CEBAS-CSIC (Murcia, Spain)

A recent work, carried out in our laboratory, studied the role of polyamines in the salt stress adaptation in grapevine (Vitis vinifera L.) plantlets.

Salinity is one of the most important stress factors which limits the growth and development of plants by altering their morphological, physiological and biochemical attributes. Salinity induced a water deficit as well as an ionic toxicity in the plants resulting in an alteration in the ionic homeostasis. In addition to the osmotic and toxic effects, salt stress is also manifested as an oxidative stress, contributing all these factors to the deleterious effects of salinity in plants (Hernández et al., 2001; 2003). To mitigate and repair damage initiated by ROS, plants have developed a complex antioxidant defense system. The primary components of this system include carotenoids, ascorbate, glutathione, tocopherols and enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (EC 1.11.1.6), glutathione peroxidase (GPX, EC 1.11.1.9), peroxidases and the enzymes involved in the ascorbate-glutathione cycle (ASC-GSH cycle; Foyer and Halliwell 1976): ascorbate peroxidase (APX, EC 1.11.1.1), dehydroascorbate reductase (DHAR, EC 1.8.5.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and glutathione reductase (GR, EC 1.6.4.2) (Noctor and Foyer 1998).

Plant polyamines (PAs) have been suggested to play important roles in morphogenesis, growth, embryogenesis, organ development, leaf senescence, and abiotic and biotic stress responses (Kusano et al., 2008). Therefore, homeostasis of cellular PA levels is also a defensive strategy that plants have developed to cope with adverse situations (Chinnusamy et al., 2005; Groppa and Benavides, 2008). Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major PA pools commonly present in higher plants and known as active oxygen scavenging compounds being considered as mediators in protective reactions against different stresses (Kovacs et al., 2010). However, PAs can also increase ROS production through its catabolism in the apoplast by the action of Cu-containing amino oxidase (CuAO) and polyamine oxidase (PAO) activities (Smith, 1985).

We studied the effect of salt stress in the presence and the absence of MGBG, an inhibitor of S-adenosylmethionine decarboxylase (SAMDC) activity, involved in PA biosynthesis, in order to investigate the effects of both treatments on photosynthesis and oxidative metabolism providing new information about the contribution of PA metabolism to salt stress adaptation in grapevine plantlets.

 

Results

Salt stress applied in the culture medium of in vitro grapevine plantlets disturbed the growth rate. The application of MGBG, an inhibitor of SAMDC, resulted in further deterioration of plant growth, especially under salt stress conditions. Leaves from salt treated plantlets developed chlorotic symptoms in the leaf margins; this effect was more evident in the presence of both treatments (Fig. 1).Figure-1

Salt stress produced an alteration in the fluorescence chlorophyll parameters in grapevine leaves. In this sense, a decrease in the photochemical quenching parameters [qP and Y(II)] and an increase in the non-photochemical parameters (qN and NPQ) was observed (Fig 2). The presence of the inhibitor MGBG had no important effect on qN, but it decreased NPQ values, as well as qP and Y(II) (Fig. 2).The effect of NaCl and MGBG on Fv/Fm was less pronounced when the measure was performed in the middle of the leaves. However, when Fv/Fm was recorded near the chlorotic areas (in the leaves margins) the effect of NaCl and/or MGBG was more noticeable (Fig. 2).

Figure-2

NaCl and MGBG treatments induced an oxidative stress as shown by the increase in lipid peroxidation level, measured as TBARS. A synergistic effect on lipid peroxidation was observed in salt-treated plantlets grown in the presence of MGBG (Fig. 3). The increase in lipid peroxidation, and therefore the damage to membrane was parallel with ROS accumulation (H2O2 and O2.-) detected by histochemical staining with DAB, or NBT, respectively (Figs. 4 and 5).

Fig-4Fig-5

 

Salt treatment affected the PA contents in grapevine plantlets, especially the free and conjugate forms of agmatine (Agm) and Put. MGBG induced also a small rise in Agm content, whereas Put, Spd and Spm levels remained relatively unchanged in non-salinized plantlets (Fig. 6). The effect of salt-stress on Agm and Put was intensified in the presence of MGBG, mainly in their free forms. Surprisingly, the level of Spd remained unaffected by MGBG whatever its form, while, a 27% decrease in bound Spm was observed in the same conditions (Fig. 6).

Fig-6

Salt-stress induced a decrease in APX activity whereas no significant effect in MDHAR was recorded (Fig. 7). However, significant increases in SOD and POX activities were induced by NaCl (Fig. 7). The incubation of grapevine plantlets in the presence of MGBG produced no effects in APX activity, whereas significant increases in MDHAR, SOD and POX were observed, and a similar situation was recorded in the presence of both treatments (NaCl plus MGBG) (Fig. 7).

Figure-7

Salt-stress slightly affected the reduced ASC contents, although a strong accumulation in oxidized ascorbate (DHA) was recorded. This effect resulted in a strong decrease in the redox state of ascorbate in NaCl-treated plants (Table 1). No effect in the reduced ASC contents was observed when grapevine plantlets were incubated with MGBG. However, a significant decrease was noticed after simultaneous incubation with NaCl and MGBG (Table 1). Surprisingly, in plants treated with MGBG, in absence or presence of NaCl, no accumulation of DHA was noticed. Even a decrease in DHA in relation to control plants occurred, and accordingly, an increase in the redox state of ascorbate (Table 1). Salt-stress also produced a decrease in reduced glutathione (GSH) both in the absence and in the presence of MGBG (Table 1). In contrast, the treatment with MGBG alone had no effect in GSH contents. No significant change in oxidised glutathione (GSSG) was produced, but due to the negative effect of NaCl in GSH, a decrease in the redox state of glutathione was observed in salt-stressed grapevine plantlets (Table 1).

 

Table 1

Results showed that MGBG treatment contribute to the deleterious effect of oxidative stress in grapevine plantlets grown in presence of NaCl, affecting different physiological and biochemical processes, including plant growth, PA levels,  photosynthesis and redox state of the cells, highlighting a possible protecting role of PA homeostasis in plants subjected to salt stress.

These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages.

 

 

References

  • Chinnusamy V, Jagendorf A, Zhu JK. (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448.
  • Foyer CH, Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.
  • Groppa MD, Benavides MP. (2008) Polyamines and abiotic stress: recent advances. Amino Acids 2008; 34:35–45.
  • Hernández JA, Ferrer MA, Jiménez A, Ros-Barceló A, Sevilla F. (2001) Antioxidant systems and O2.-/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817-831.
  • Hernández JA, Aguilar A, Portillo B, López-Gómez E, Mataix Beneyto J, García-Legaz MF. (2003) The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants. Funct Plant Biol 30:1127-1137.
  • Kovacs Z, Simon-Sarkadi L, Szücs A, Kocsy G. (2010) Different effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38: 623–631.
  • Kusano T, Yamaguchi K, Barberich T, Takahashi Y. (2007) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:250-251.
  • Noctor G, Foyer CH. (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49: 249-279.
  • Smith TA.  (1985) The di- and poly-amine oxidases of higher plants. Biochem Soc Trans 13:319-322.

 

For more information, please consult:

Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P. (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol. 2014, 171:779-88. doi: 10.1016/j.jplph.2014.02.006.

 

 

 


2 comentarios

Fluorescencia de clorofilas

José A. Hernández, Grupo de Biotecnología de Frutales (CEBAS-CSIC)

La fluorescencia es un fenómeno foto-físico de las moléculas de clorofila que permite estudiar la función del fotosistema II (PSII) durante el transporte electrónico en la fotosíntesis y la sensibilidad del PSII al daño que puede sufrir por efecto de diferentes estreses, y las consecuencias que esto tiene en el proceso global de la fotosíntesis (Figura 1).

Por tanto, la fluorescencia de clorofilas es una técnica muy útil que permite hacer un seguimiento al proceso de fotosíntesis en general. Se emplea en diferentes estudios:

  •  Fisiología de la fotosíntesis
  • Ecofisiología
  • Biología Marina y Acuática
  • Horticultura
  • Agricultura
  • Fisiología de Post-cosecha
  • Mejora Vegetal
  • Genética

¿Qué es la fluorescencia?

Los electrones que forman parte de un átomo o una molécula tienden a permanecer en un estado de menor energía (estado fundamental). Si un átomo absorbe un fotón con suficiente energía, un electrón puede saltar a un orbital de mayor energía. Este estado de mayor energía es más reactivo que el estado fundamental y puede participar en reacciones químicas que son imposibles para el estado fundamental. Esto es muy importante para la fotosíntesis. Incluso en ausencia de reacciones, el estado excitado es inestable y puede volver a sus estado fundamental por diferentes vías, incluido la emisión de un fotón. El fotón emitido es la fluorescencia.

Figura 1. Esquema en Z de la cadena de transporte de electrones en el cloroplasto.

Figura 1. Esquema en Z de la cadena de transporte de electrones en el cloroplasto.

La energía luminosa absorbida por las moléculas de clorofila en la hoja tiene tres posibles destinos: La mayor parte se va a usar en fotosíntesis (energía fotoquímica). Una pequeña parte de la energía, la que no puede emplearse en fotosíntesis, se disipa en forma de calor o bien puede ser re-emitida como luz (en forma de fluorescencia) con el fin de que el exceso de energía no dañe a los fotosistemas. La cantidad de energía emitida como fluorescencia es muy pequeña (1-2% del total de luz absorbida) (Figura 2).

Figura 2. Esquema mostrando el uso de la energía luminosa en condiciones fisiológicas. La mayor parte se va a usar en fotosíntesis y una pequeña parte de la energía, la que no puede emplearse en fotosíntesis, se disipa en forma de calor o bien puede ser re-emitida como luz (en forma de fluorescencia).

Figura 2. Esquema mostrando el uso de la energía luminosa en condiciones fisiológicas. La mayor parte se va a usar en fotosíntesis y una pequeña parte de la energía, la que no puede emplearse en fotosíntesis, se disipa en forma de calor o bien puede ser re-emitida como luz (en forma de fluorescencia).

En condiciones normales, la fotosíntesis predomina sobre los otros procesos, pero en condiciones de estrés, la planta no puede trabajar a pleno rendimiento y el exceso de energía debe disiparse. Como consecuencia, los procesos no fotoquímicos aumentan.

Para un análisis de fluorescencia es conveniente adaptar a la planta a condiciones de oscuridad durante unos 10-15 minutos. Cuando una hoja se transfiere desde la oscuridad a la luz, los centros de reacción del PSII se van cerrando progresivamente. Esto da lugar a un aumento en el rendimiento de la fluorescencia de las clorofilas. A partir de este momento, los niveles de fluorescencia disminuyen de nuevo. Este fenómeno se conoce como quenching y se explica  de dos maneras: Primero, se produce un incremento en la tasa de transporte de electrones fuera del PSII. Esto es debido a la activación mediada por luz de los enzimas implicados en el metabolismo del carbono y en la apertura de los estomas. Este tipo de quenching se denomina “quenching fotoquímico”. Al mismo tiempo, se produce un aumento de la eficiencia en la que la energía se convierte en calor. Este último proceso se denomina “quenching no fotoquímico” (NPQ).

Para el análisis de la fluorescencia de clorofilas se han definido y calculado diferentes coeficientes para cuantificar el quenching fotoquímico y no fotoquímico. Para los procesos fotoquímicos, el parámetro más útil para medir la eficiencia del PSII es el rendimiento cuántico del PSII (ØPSII o Y(II)), que mide la proporción de luz absorbida por la clorofila asociada al PSII  que es usada en procesos fotoquímicos. Otro parámetro ampliamente usado es el quenching fotoquímico (qP).  Aunque es muy similar al ØPSII , el significado del qP es algo diferente. En este caso, el qP hace referencia a la proporción de centros de reacción del PSII que están abiertos. ØPSII y qP están interrelacionados con un tercer parámetro, Fv/Fm, que mide la eficiencia del PSII, es decir, mide el rendimiento cuántico si todos los centros de reacción del PSII estuviesen abiertos.

Los procesos no fotoquímicos (NPQ) están relacionados con la disipación de calor, y su escala varía desde 0 hasta el infinito. El NPQ tiene varios componentes, pero el más importante es el denominado qN (coeficiente del quenching no fotoquímico). Este parámetro varía en una escala desde 0 a 1 y está relacionado con la disipación de calor mediante el ciclo de las xantofilas (Fig 3). NPQ y qN son indicadores de estrés y han demostrado ser parámetros muy sensibles para la detección temprana de condiciones de estrés mediante imagen de fluorescencia. En este sentido se pueden usar para valorar situaciones de estrés abiótico como biótico, pudiendo analizar el efecto de estreses ambientales en el cloroplasto, incluso antes de que se observen señales de síntomas en las hojas (Fig 4).

Figura 3. Esquema del ciclo de las Xantofilas. La interconversión de anteroxantina en zeaxantina lleva asociada una disipación de energía en forma de calor.

Figura 3. Esquema del ciclo de las Xantofilas. La interconversión de anteroxantina en zeaxantina lleva asociada una disipación de energía en forma de calor.

Figura 4. Efecto del estrés hídrico sobre los parámetros qP y qN. Las plantas 1,2 y 3 se sometieron a un periodo de falta de riego de 15 días. Las imágenes muestran cómo el estrés reduce el valor de qP, pero de forma más dramática en plantas 1 y 2. Por el contrario, la sequía aumenta la disipación de calor (qN) en las plantas 1 y 2 con el fin de poder minimizar daños por exceso de energía luminosa. La planta 3 presenta sólo una pequeña variación en qN.

Figura 4. Efecto del estrés hídrico sobre los parámetros qP y qN. Las plantas 1,2 y 3 se sometieron a un periodo de falta de riego de 15 días. Las imágenes muestran cómo el estrés reduce el valor de qP, pero de forma más dramática en plantas 1 y 2. Por el contrario, la sequía aumenta la disipación de calor (qN) en las plantas 1 y 2 con el fin de poder minimizar daños por exceso de energía luminosa. La planta 3 presenta sólo una pequeña variación en qN.

Para más información:

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51: 659-668.
  • Pérez-Bueno ML, Ciscato M, vandeVen M, Gacía-Luque I, Valcke R, Barón M (2006) Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosyntesis Research 90:111–123.
  • Taiz L, Zeiger E (2010) Plant  Physiology, Fifth Edition, Sinauer Associates Inc., Publishers, Sinderland, Massachusetts, USA


Deja un comentario

IMPORTANCIA DE LOS MECANISMOS ANTIOXIDANTES DEL CITOPLASMA EN LA RESPUESTA A ESTRÉS ABIÓTICO

José A. Hernández, Investigador Científico del CSIC. Grupo de Biotecnología de Frutales, CEBAS, Murcia.

Todas las situaciones de estrés que afecten al balance hídrico de las plantas van a inducir un cierre de estomas para limitar la pérdida de agua por transpiración. Esto es lo que ocurre cuando una planta se somete a estreses como la salinidad o la sequía. El cierre de estomas rápidamente va a provocar una reducción en la asimilación del CO2 por parte del cloroplasto. Esto ralentiza las reacciones del ciclo de Calvin,  lo que conlleva a un menor consumo de NADPH y ATP. Esta respuesta se traduce en una falta de regeneración de aceptores electrónicos (NADP+, ADP), facilitando la cesión de electrones de la cadena de transporte electrónico al oxígeno , dando lugara una mayor generación de especies reactivas del oxígeno (ROS) en el cloroplasto, como radicales superóxido y de H2O2 .  Por lo tanto, el cloroplasto va a ser el primer compartimento celular que sufra los efectos de estreses abióticos como la salinidad o la sequía. Estos ROS pueden provocar daños oxidativos en este orgánulo, pero también se puede producir una salida del H2O2 del cloroplasto, lo que podría provocar un estrés oxidativo en el citoplasma.

En trabajos realizados en nuestro grupo, pusimos de manifiesto la importancia de los mecanismos antioxidantes del citoplasma en la protección de los cloroplastos en plantas sometidas a estrés salino o hídrico.

En una variedad de guisante relativamente tolerante a 70 mM NaCl, comprobamos que dicha tolerancia estaba correlacionada con un aumento de las enzimas del ciclo ASC-GSH en el citosol así como la inducción de los transcritos (ARNm) codificantes para APX, GR y CuZn-SOD citosólicas. Sin embargo, esta respuesta no tenía lugar en una variedad de guisante susceptible a salinidad (Hernández et al 2000) (ver Figura 1).

La importancia de los mecanismos de defensa antioxidantes del citosol en la protección de los cloroplastos también se ha descrito en condiciones de estrés hídrico en plantas transgénicas de tabaco que sobreexpresaban CuZn-SOD (cytsod) y APX (cytapx) en el citoplasma. Este trabajo muestra que la sobreexpresión simultánea de cytsod y cytapx, o al menos la de cytapx, en el citosol aliviaba el daño producido por estrés hídrico moderado (hasta 5 días sin regar). Esta sobreexpresión de enzimas citosólicas también aumentaba los niveles de otras enzimas de defensa, como DHAR, MDHAR, POX, Catalasa y SOD en fracción soluble (Figura 1) y de APX, POX y SOD en cloroplastos. Además, las líneas transgénicas acumulaban menos H2O2 y presentaban un menor nivel de daños en membrana, medido como pérdida de electrolitos y como peroxidación de lípidos en hojas (Faize et al., 2011).

 

Figura 1: Esquema simplificando el efecto del cierre estomático, inducido por salinidad y sequía, sobre la generación de ROS en la cadena de transporte electrónico del cloroplasto y la respuesta de los mecanismos antioxidantes citosólicos en hojas de guisante y tabaco en respuesta a salinidad y sequía, respectivamente.

Figura 1: Esquema simplificando el efecto del cierre estomático, inducido por salinidad y sequía, sobre la generación de ROS en la cadena de transporte electrónico del cloroplasto y la respuesta de los mecanismos antioxidantes citosólicos en hojas de guisante y tabaco en respuesta a salinidad y sequía, respectivamente.

 

 

Para más información:

HERNANDEZ JA, JIMENEZ A, MULLINEAUX PM AND SEVILLA F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environm 23:853-862.

FAIZE M, BURGOS L, FAIZE L, PIQUERAS A, NICOLAS E, BARBA-ESPIN G, CLEMENTE-MORENO MJ, ALCOBENDAS R, ARTLIP T,  HERNANDEZ JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu,Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot. 62:2599-2613.

Visitad también los siguientes enlaces del Blog Cienciacebas:

http://cienciacebas.wordpress.com/2013/01/30/mecanismos-antioxidantes-de-defensa-ii-mecanismos-enzimaticos/isitad

http://cienciacebas.wordpress.com/2013/01/24/mecanismos-antioxidantes-de-defensa-i-mecanismos-no-enzimaticos/

http://cienciacebas.wordpress.com/2013/04/03/glutation-una-molecula-para-todo/

http://cienciacebas.wordpress.com/2013/03/20/ascorbato-y-evolucion-el-exito-de-una-molecula/

http://cienciacebas.wordpress.com/2012/11/05/especies-reactivas-del-oxigeno-amigos-o-enemigos/