antioxidantsgroup

Plant ROS Research


Deja un comentario

El sistema antioxidante de apoplasto y simplasto en plantas de cebolla: respuesta a largo plazo al estrés salino

En un trabajo reciente realizado en nuestro laboratorio, en cooperación con la Universidad Centroccidental Lisandro Alvarado (UCLA, Venezuela) y la Universidad Técnica de Manabí (Ecuador), se ha estudiado la respuesta de los sistemas antioxidantes apoplásticos de raíz y de hojas de dos genotipos de cebolla (“Texas 502”, como sensible a salinidad y “Granex 429”,  como resistente) cultivadas en condiciones de salinidad.

Estos resultados formaron parte de la Tesis Doctoral de Grisaly García en la UCLA (Venezuela).

            Los datos de pérdida de electrolitos indicaron que la integridad de la membrana estaba afectada por el efecto de las sales, especialmente en la variedad “Texas 502” (Figura 1). En hojas, el daño provocado por la salinidad en las membranas era similar en ambos casos (Figura 1A). En las raíces, solo en el genotipo sensible a la sal, la pérdida de electrolitos aumentó fuertemente por el efecto del tratamiento de estrés, mostrando un aumento de 3.7 veces, en comparación con los valores  control (Figura 1B)

Fig 1
Figura 1. Pérdida de electrolitos (en%) de los tejidos de  raíz y foliares de dos genotipos de cebolla sometidos a estrés salino durante 20 días. Letras diferentes indican diferencias estadísticas significativas según el test de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes. TxC (control “Texas 502”); TxS (“Texas 502”, sal estresado); GrC (control “Granex 429”); GrS (‘Granex 429’, estresado por sal).

            Detectamos actividad superóxido dismutasa (SOD) y peroxidasa (POX) en las fracciones apoplásticas de raíz y hoja de plantas de cebolla. La salinidad aumentó la actividad de SOD en simplasto de raíz en “Texas 502” y en las hojas de “Granex 429”. En contraste, la salinidad reducía la actividad de SOD en las fracciones apoplásticas de hojas y raíces de “Texas 502”, pero la actividad se mantenía en el apoplasto de “Granex 429”, resistente a salinidad (Figuras 2 y 3). En ‘Granex 429’, el estrés salino aumentó la actividad de la POX apoplástica de la hoja (Figura 4) y la actividad catalasa simpática (CAT) de ambos órganos (Figura 6), pero se produjo una disminución de la POX apoplástica de la raíz de “Texas 502” (Figura 4).

Fig 2
Figura 2. Efecto de la salinidad en la actividad SOD en  apoplasto de hoja (A) y raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes. Para más información, ver Figura 1.
Fig 3
Figura 3. Efecto de la salinidad en la actividad SOD de simplasto de hoja (A) y  raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes. Para más información, ver Figura 1.
Fig 4
Figura 4. Efecto de la salinidad en la actividad POX en el apoplasto de hoja (A) y raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes. Para más detalles, ver Figura 1.
Fig 5
Figura 5. Efecto de la salinidad en la actividad POX en simplasto de  hoja (A) y  raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes. Para más detalles, ver Figura 1.
Fig 6
Figura 6. Efecto de la salinidad en la actividad CAT en simplasto de  hoja (A) y raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes. Para más detalles, ver Figura 1

            El estrés salino aumentó la actividad monodehidroascorbato reductasa (MDHAR) en simplasto de raíz y la hoja y en la glutatión reductasa GR en simplasto de la raíz, principalmente en ‘Granex 429’ (Figura 7 y 9). Sólo en esta variedad, resistente a salinidad, la actividad deshidroascorbato reductasa (DHAR) aumentó en simplasto de hoja (Figura 8). Por el contrario, la actividad GR disminuyó en simplasto de hoja sólo en “Texas 502”, sensible a salinidad (Figura 9).

Fig 7
Figura 7. Efecto de la salinidad en la actividad MDHAR en el simplasto de hoja (A) y  raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes.
Fig 8
Figura 8. Efecto de la salinidad en la actividad DHAR en el simplasto de hoja (A) y  raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes.
Fig 9
Figura 7. Efecto de la salinidad en la actividad GR en el simplasto de hoja (A) y  raíz (B) en dos genotipos de cebolla que difieren en la sensibilidad a la salinidad. Diferentes letras indican una diferencia estadística significativa entre los tratamientos de acuerdo con la prueba de Duncan (P <0.05). Los datos representan la media ± SE de al menos cuatro muestras diferentes.

La salinidad aumentó los niveles de ascorbato reducido (ASC) en las hojas, y no se observó acumulación de deshidroascorbato (DHA) en las raíces en ambos casos. Estas respuestas aumentaron el estado redox del ascorbato, especialmente en las raíces (Tabla 1 y 2). En contraste, la salinidad disminuyó el glutatión reducido (GSH), pero se acumulaba el glutatión oxidado (GSSG) en las hojas, disminuyendo el estado redox del glutatión (Tabla 1 y 2). La salinidad aumentó ligeramente la concentración de GSH de raíz en el genotipo tolerante a la sal y no se modificó en el genotipo sensible. Sin embargo no se produjo acumulación de GSSG, lo que favoreció el aumento y / o mantenimiento del estado redox del glutatión (Tabla 1 y 2). Estos resultados sugieren que la menor sensibilidad a la sal en “Granex 429” podría estar relacionada con un mejor rendimiento de la maquinaria antioxidante en condiciones de salinidad.

Table 1
Tabla 1. Efecto de la salinidad en el contenido de ascorbato reducido (ASC) y oxidado (DHA) en raíces y hojas de dos genotipos de cebolla con diferente sensibilidad al estrés salino.
Table 2
Tabla 2. Efecto de la salinidad en el contenido de glutatión reducido (GSH) y oxidado (GSSG) en raíces y hojas de dos genotipos de cebollaon diferente sensibilidad al estrés salino.

            Además, la salinidad provocaba una mayor acumulación de radicales superóxido (O2.-) en las paredes celulares de la variedad sensible a salinidad, en relación a la variedad resistente (Figura 10B y 10D). Este resultado estaba correlacionado con el mayor nivel de actividad SOD en el apoplasto y en simplasto de hoja en la variedad resistente, con respecto a la variedad sensible (Figuras 2 y 3). La incubación de hojas  en presencia de MnCl2 10 mM evitó la tinción de O2.- (Fig. 10 E.), lo que indicaba la especificidad de la tinción de NBT. En este sentido, MnCl2 es un agente catalizador altamente eficaz de la dismutación  de radicales O2.-.

Fig 10
Figura 10. Efecto del estrés salino sobre la acumulación de radicales superóxido, detectado por tinción histoquímica con NBT, en hojas de las plantas de cebolla. (A) Control ‘Texas 502’; (B) Plantas ‘Texas 502’ tratadas con sal ; (C) Detalle de la imagen anterior (D) Control ‘Granex 429 ‘; (E) plantas ‘Granex 429 ‘  tratadas con sal; (F) Hojas de plantas ‘Texas 502’ tratadas con sal teñidas en presencia de MnCl2 10 mM.

            De hecho, debido a que el sistema radicular es el que primero percibe el estrés salino, las defensas antioxidantes apoplásticas de la raíz se mantenían o aumentaban en el genotipo resistente a la salinidad, en comparación con el genotipo sensible. Además, este efecto también se observó en las fracciones apoplásticas y simpláticas de las hojas, lo que sugiere un mejor control de la producción de O2.- y H2O2, así como una mayor capacidad de reciclaje de ASC y GSH en el genotipo tolerante a la sal. Estas respuestas podrían explicar la mejor respuesta a salinidad del genotipo de cebolla ‘Granex 429’.

Para más información: 

Grisaly García María; Clemente-Moreno M.José ; Díaz-Vivancos Pedro ;  García Marina; Hernández José A. (2020)The apoplastic and symplastic  antioxidant system in onion: Response to long-term salt stress. Antioxidants, Special Issue “Extracelullar Antioxidant Systems in Plants”. 9, 67. https://doi.org/10.3390/antiox9010067.


Deja un comentario

Metabolismo antioxidante y fluorescencia de clorofila durante la aclimatación a condiciones ex vitro de plantas micropropagadas de Stevia rebaudiana Bertoni

En un trabajo reciente, publicado por el grupo del Dr. José A. Hernández en cooperación con el Dr. Abel Piqueras, se ha comprobado que las enzimas antioxidantes, la fluorescencia de clorofila y los niveles de peroxidación lipídica (un parámetro de estrés oxidativo)  pueden ser herramientas adecuadas para la evaluación del estado fisiológico de plantas micropropagadas de stevia durante la aclimatación a condiciones ex vitro. Estos parámetros proporcionan información muy útil para monitorizar el estado de estrés de las plantas durante el proceso de aclimatación Este trabajo tiene implicaciones prácticas, ya que las plantas clonales de stevia con un perfil conocido y estable de esteviol glucósidos son una fuente adecuada para la producción de edulcorantes y antioxidantes naturales para la dieta.

Plantas

Fases de la aclimatación de las plantas de stevia. A: Multiplicación; B: Enraizamiento: C: 2 dias aclimatación; D: 2 semanas aclimatación; E: 4 semanas aclimatación

Introducción

La aplicación de técnicas de cultivo in vitro es una poderosa herramienta de proliferación vegetativa para muchas especies vegetales [Van-Huylenbroeck et al 2000]. Sin embargo, este proceso puede limitarse debido a pérdidas significativas durante la aclimatación a condiciones ex vitro. La mejora de la actividad fotosintética es un paso crítico para alcanzar una alta tasa de supervivencia durante la aclimatación de las plántulas in vitro [Carvalho et al 2001]. En otras palabras, la activación adecuada de la fotosíntesis es el punto clave para cambiar la forma de adquirir carbono de fuentes heterotróficas o mixotróficas (condiciones in vitro) a fuentes autotróficas (condiciones ex vitro). Las plantas micropropagadas son muy susceptibles a las condiciones ambientales después de la transferencia a condiciones ex vitro. Por ejemplo, las plantas ex vitro normalmente están expuestas  a una mayor intensidad luminosa que las plantas cultivadas en condiciones in vitro. Además, la humedad relativa (HR) también es menor en condiciones ex vitro, por lo que las plantas son propensas a sufrir desecación durante la aclimatación. Ambos fenómenos, que contribuyen al daño por fotoinhibición y al estrés hídrico, pueden inducir la sobreproducción de especies reactivas de oxígeno (ROS). Sin embargo, las plantas cuentan con un mecanismo eficiente de defensa antioxidante para defenderse de los efectos nocivos de ROS. Estas defensas incluyen las enzimas del ciclo ascorbato-glutatión (ASC-GSH) (ascorbato peroxidasa (APX), monodehidroascorbato reductasa (MDHAR), deshidroascorbato reductasa (DHAR) y glutatión reductasa (GR)) y enzimas captadoras de ROS (superóxido dismutasas (SOD), peroxidasas (POX) y catalasa (CAT). El conocimiento sobre el comportamiento de la maquinaria antioxidante durante la aclimatación ex vitro es muy escaso, y solo unos pocos investigadores han estudiado los cambios en los antioxidantes enzimáticos y no enzimáticos durante este proceso [Van-Huylenbroeck et al 2000; Carvalho et al 2006; Dewir et al 2015; El-Mahrouk et al 2016].

La stevia (Stevia rebaudiana Bertoni) es un arbusto perenne perteneciente a la familia Asteraceae. Las hojas de S. rebaudiana contienen una alta concentración de esteviol glucósidos, siendo las formas prevalentes el esteviósido y el rebaudiósido A, empleados como edulcorantes naturales como sustitutos de la sacarosa [Zeng et al 2006]. Sin embargo, las semillas de stevia tienen poca viabilidad y la planta requiere condiciones específicas de humedad, luz y nutrientes. La acumulación de esteviol glucósidos en S. rebaudiana es muy variable debido a la variabilidad genética. El contenido total de esteviol glucósidos es diferente no solo entre plantas del mismo cultivar, sino también entre plantas similares en la misma etapa de desarrollo [Ceunen et al 2007]. Además, se ha observado una alta capacidad antioxidante de los extractos de hojas de S. rebaudiana, relacionados con su función como captadores de ROS [Ceunen et al 2007; Ghanta et al 2007). Estas funciones positivas se han asociado principalmente con la presencia de compuestos fenólicos [Ceunen et al 2007]. Además, se han descritos efectos positivos del esteviósido relacionados con la diabetes tipo II, la hipertensión, el síndrome metabólico y la aterosclerosis [Ceunen et al 2007]. Por lo tanto, la producción de plantas clonales in vitro con un perfil de esteviósido similar puede ser de interés comercial.

En consecuencia, este trabajo se ha centrado en la aclimatación a las condiciones ex vitro de clones de stevia, originada a partir de la micropropagación de plantas previamente caracterizadas como altos acumuladores de esteviol glucósidos [Cantabella et al 2017]. Durante el proceso de aclimatación, se siguió la evolución de diferentes parámetros, incluido el metabolismo antioxidante, la peroxidación lipídica como parámetro de estrés oxidativo y la fluorescencia de clorofila, para determinar el estrés oxidativo que las plantas de stevia podrían estar sufriendo durante el proceso antes mencionado.

Resultados y Discusión

Durante las primeras horas del proceso de aclimatación, las plantas de stevia parecían experimentar estrés debido a la modificación de las condiciones de cultivo, como se observa por el aumento en los niveles de peroxidación lipídica, medidos como TBARS. En ese sentido, se detectó un pico después de 2 días, aumentando en un 86% con respecto a los valores en la plántula (Figura 1). Posteriormente, y a medida que avanzaba el proceso de aclimatación a las condiciones ex vitro, los valores de peroxidación lipídica disminuyeron progresivamente hasta alcanzar los valores iniciales (Figura 1). Por lo tanto, se produjo un estrés oxidativo durante las primeras horas de aclimatación, indicando un posible daño a las membranas como consecuencia del cambio de condiciones de cultivo.

Fig 1

Fig 1. Datos de peroxidación de lípidos durante la aclimatación de plantas de stevia

Respecto al comportamiento de las enzimas antioxidantes,   observamos una actividad menor de la enzima monodehidroascorbato reductasa (MDHAR) que la enzima dehidroascorbato reductasa (DHAR) después de 2 días de aclimatación. Sin embargo, después de 7 días de aclimatación, las plantas de stevia activaron la ruta MDHAR para reciclar el ascorbato, que es mucho más eficiente, desde un punto de vista energético, que la ruta DHAR (Figura 2).

Fig 2

Figura 2. Evolución de las enzimas del ciclo ASC-GSH durante el procesod e aclimatación de plantas de stevia

En ese sentido, después de 2 días de aclimatación, la relación DHAR / MDHAR era casi 2. Esto sugiere que, en esa etapa, la actividad de DHAR era la vía predominante en el reciclaje de ascorbato en plantas de stevia, utilizando GSH como donante de electrones. Posteriormente, DHAR disminuyó y MDHAR aumentó progresivamente, alcanzando una relación DHAR / MDHAR de 0.22 después de 28 días de aclimatación, donde la actividad de MDHAR fue casi 5 veces mayor que la actividad de DHAR. Por lo tanto, después de 2 días de aclimatación, las plantas de stevia utilizaron la forma MDHAR, empleando NADH como poder reductor. Es necesario aclarar que la utilización de NADH para reciclar el ASC es más eficiente energéticamente que el uso de GSH. Por lo tanto, se pueden especular diferentes posibilidades para explicar la mayor actividad de DHAR en condiciones in vitro y después de 2 días de aclimatación. La primera es que, en condiciones in vitro, los medios de cultivo contenían sacarosa, por lo que las plantas tenían suficiente fuente de carbono para generar energía a través de la glucólisis y de la respiración, y por lo tanto pueden permitirse el uso de GSH para reciclar ASC (la “forma ineficiente”). La segunda posibilidad es que después de 2 días del proceso de aclimatación, las plantas sufrieron un estrés oxidativo, según los datos de peroxidación lipídica. Dado que la sobreexpresión de DHAR se ha asociado con la tolerancia al estrés ambiental [Eltayeb et al 2006], la mayor actividad de DHAR observada en esta etapa podría tener una función para hacer frente al estrés resultante de las condiciones de aclimatación. La tercera explicación está relacionada con el papel de DHAR en el crecimiento y desarrollo de las plantas [Potters et al 2012]. Probablemente, después de 2 días de aclimatación, el aumento de DHAR podría tener una función en los procesos de crecimiento y desarrollo de las plantas. También observamos que la actividad de MDHAR aumentó después de 7 días de aclimatación. En esta etapa, la fotosíntesis parecía funcionar correctamente, como lo observan los valores de fluorescencia de clorofila y ETR. Por lo tanto, a partir de ese momento, las plantas produjeron sus propios azúcares y energía para apoyar el crecimiento de las plantas. Probablemente, por esta razón, las plantas cambiaron la forma de reciclar el ascorbato de una manera eficiente, a través de NADH.

La actividad GR se comportó de manera similar a la actividad MDHAR. En ese sentido, GR aumentó a medida que avanzó el proceso de aclimatación de las plantas, alcanzando sus valores máximos después de 21 y 28 días de aclimatación (incrementos de 4.2 y 3.2 veces, respectivamente) (Figura 2).

Las actividades superóxido dismutasa (SOD) y catalasa (CAT) mostraron un pico de actividad después de 7 días de aclimatación (Figura 3), lo que sugiere una protección contra las ROS (especies reactivas de oxígeno) que se podrían estar generando como consecuencia del cambio de cultivo in vitro a ex vitro. La actividad peroxidasa (POX) aumentó aproximadamente 2 veces después de 2 días de aclimatación y permaneció alta hasta el día 14 (Figura 3), probablemente relacionada con el endurecimiento de la pared celular y los procesos de lignificación.

Fig 3

Figura 3. Evolución de las enzimas SOD, CAT y POX durante el proceso de aclimatación de plantas de stevia

Después de 2 días de aclimatación, las plantas mostraron valores más altos de los parámetros de quenching no fotoquímico [Y (NPQ), Y (NO), NPQ y qN] y valores bajos de los parámetros de quenching fotoquímico [Y (II), qP] (Figura 4), así como de la velocidad de transporte de electrones (ETR) (Figura 5). Durante el proceso de aclimatación, se observó una disminución progresiva en los parámetros de quenching no fotoquímicos y un aumento constante en los parámetros de quenching fotoquímico. En ese sentido, Y (NPQ) disminuyó progresivamente, reduciendo sus valores en un 40% y 50% después de 21 y 28 días de aclimatación, respectivamente (Figura 4). Paralelamente, Y (NO) disminuyó durante el ensayo de aclimatación, alcanzando una disminución cercana al 40% y 30% después de 21 y 28 días de aclimatación, respectivamente (Figura 4). NPQ muestra aumentos y disminuciones durante el proceso de aclimatación. Al principio, después de 7 días de aclimatación, este parámetro aumentó en un 22%. Luego, el valor NPQ aumentó en un 63% después de 14 días de aclimatación en relación con el valor precedente (día 7). Una semana después (día 21), nuevamente el valor NPQ aumentó en un 29% en comparación con el valor observado en la segunda semana (14 días). Finalmente, después de 28 días de aclimatación, se observó una disminución del 30% en el parámetro NPQ en relación con el valor observado después de 21 días (Fig. 4). Sin embargo, aunque los valores de qN disminuyeron durante el proceso de aclimatación, los cambios producidos no fueron estadísticamente significativos (Figura 4). Tanto NPQ como Y (NPQ) están relacionados con la energía disipada como calor por un mecanismo regulado (es decir, el ciclo de xantofila) [Zhang et al 2012]. En contraste, Y (NO) refleja la fracción de energía disipada pasivamente como calor y fluorescencia, principalmente debido a los centros de reacción del PSII cerrados. Por lo tanto, los valores altos de Y (NO) están relacionados con la incapacidad de las plantas para protegerse del exceso de luz. En ese sentido, después de 2 días de aclimatación, las plantas de stevia mostraron los valores más altos de Y (NO), que disminuyeron progresivamente durante el proceso de aclimatación, lo que refleja una mejor regulación [Klughammer et al 2008]. Por otro lado, valores altos de los parámetros de quenching no fotoquímicos indicaban que las plantas estaban sufriendo un estrés. Sin embargo, a medida que la planta se adaptaba a las nuevas condiciones ex vitro, estos parámetros disminuyeron.

Fig 4

FIgura 4. Evolución de los parámetros de fluorescencia de clorofilas durante el proceso de aclimatación de plantas de stevia

Con respecto a los parámetros de quenching fotoquímico (Y (II) y qP), se produjo un aumento progresivo durante la aclimatación. En ambos casos, los valores aumentaron cerca de 3 veces después de 7 y 14 días de aclimatación, y aproximadamente 5 veces después de 21 y 28 días del proceso (Figura 4). Fv / Fm mostró los valores más bajos después de 2 días de aclimatación. Este parámetro aumentó después de 7 y 14 días, y luego disminuyó ligeramente después de 21 y 28 días de aclimatación, pero sus valores permanecieron estadísticamente más altos que los valores iniciales (Tabla 1). Los cambios observados en Y (II) y qP se correlacionaron con la evolución de los valores de ETR, alcanzando un aumento de casi 6 veces al final (28 días) del proceso de aclimatación (Figura 5). Esta respuesta de los parámetros de fluorescencia de clorofilas indicaba una mayor eficiencia fotosintética conforme avanzaba el proceso de aclimatación a las condiciones ex vitro.

Fig 5

Figura 5. Evolución de la tasa de transporte electrónico durante el proces de aclimatación de plantas de stevia

Conclusiones

En conjunto, los datos sugirieron que las enzimas antioxidantes, la peroxidación lipídica y los parámetros de fluorescencia de clorofila pueden ser herramientas adecuadas para la evaluación del estado fisiológico de las plantas micropropagadas durante la aclimatación a condiciones ex vitro de plantas de stevia, proporcionando información muy útil para controlar el estado de estrés de las plantas durante el proceso de aclimatación. Este trabajo tiene implicaciones prácticas, ya que las plantas clonales de stevia con un perfil conocido y estable de esteviol glucósidos son una fuente adecuada de edulcorantes y antioxidantes naturales para una dieta sana.

Para más información:

José Ramón Acosta-Motos, Laura Noguera Vera, Gregorio Barba-Espín, Abel Piqueras, José A. Hernández (2019) Antioxidant metabolism and chlorophyll fluorescence during the acclimatisation to ex vitro conditions of micropropagated Stevia rebaudiana Bertoni plants. Antioxidants, Special Issue “Antioxidants and Foods”, 8, 615.  (https://www.mdpi.com/2076-3921/8/12/615)

 

Bibliografía

Cantabella, D.; Piqueras, A.; Acosta-Motos, J.R.; Bernal-Vicente, A.; Hernandez, J.A.; Diaz-Vivancos, P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol. Biochem. 2017, 115, 484–496.

Carvalho, L.C.; Osorio, M.L.; Chaves, M.M.; Amâncio S. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tissue Organ Cult. 2001, 67, 271–280.

Carvalho, L.C.; Vilela, B.J.; Vidigal, P.; Mullineaux, P.M.; Amâncio, S. Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. Int. J. Plant Sci. 2006, 167, 759-770.

Ceunen, S.; Geuns, J.M.C. Steviol Glycosides: Chemical Diversity, Metabolism, and Function. J. Nat. Prod. 2013, 76, 1201−1228.

Dewir, Y.H.; El-Mahrouk, M.E.; Al-Shmgani, H.S.; Rihan, H.Z.; Teixeira da Silva, J.A.; Fuller, M.P. Photosynthetic and biochemical characterization of in vitro-derived African violet (Saintpaulia ionantha H. Wendl) plants to ex vitro conditions. J. Plant Interact. 2015, 10, 101-108.

El-Mahrouk, M.E.; Dewir, Y.H.; Murthy, H.N.; Rihan, H.Z.; Al-Shmgani, H.S.; Fuller, M.P. Effect of photosynthetic photon flux density on growth, photosynthetic competence and antioxidant enzymes activity during ex vitro acclimatization of Dieffenbachia cultivars. Plant Growth Regul. 2016, 79, 29–37.

Eltayeb, A.E.; Kawano, N.; Badawi, G.H.; Kaminaka, H.; Sanekata, T.; Morishima, I.; Shibahara, T.; Inanaga, S.; Tanaka, K. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol. Plant. 2006, 127, 57–65.

Ghanta, S.; Banerjee, A.; Poddar, A.; Chattopadhyay, S. Oxidative DNA Damage Preventive Activity and Antioxidant Potential of Stevia rebaudiana (Bertoni) Bertoni, a Natural Sweetener. J. Agr.Food Chem. 2007, 55, 10962-10967.

Klughammer, C.; Schreiber, U. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes (PAN) 2008, 1, 27-35

Potters, G.; Horemans, N.; Caubergs, R.J.; Asard, H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol. 2012, 124, 17-20.

Van-Huylenbroeck, J.M.; Piqueras, A.; Debergh, P.C. The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci. 2000, 155, 59-66.

Zeng, J.; Cheng, A.; Lim, D.; Yi, B.; Wu, W. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2013, 61, 5720-5726.

Zhang, Q.Y.; Wang, L.Y.; Kong, F.Y.; Deng, Y.S.; Li, B.; Meng, Q.W. Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol. Plant. 2012, 146, 363–373.

 


Deja un comentario

El Grupo de Biotecnología de Frutales del CEBAS-CSIC galardonado con el primer premio de la Academia de Ciencias de la Región de Murcia

El pasado 9 de Enero de 2020, la Academia de Ciencias de la Región de Murcia, entregó los premios a los mejores proyectos de investigación presentados en el VI Congreso IDIES.

Dos proyectos realizados en el CEBAS-CSIC resultaron galardonados con el primer premio, siendo ambos dirigidos por investigadores del Grupo de Biotecnología de Frutales del CEBAS-CSIC.

Uno de los trabajos, titulado “Efectos de la introducción de un gen de floración temprana de varias especies en plantas de Nicotiana tabacum L.”, fue realizado por los estudiantes Pablo Marín Martínez y Carmen Mª Sánchez Abenza, (IES Infante don Juan Manuel). La dirección científica corrió a cargo de la Dra Nuria Alburquerque Ferrando y la coordinación académica por el profesor D. Carlos Lopesino Vega. El objetivo principal de este trabajo fue la introducción de un gen de floración temprana procedente de tres especies vegetales (chopo, manzano y Arabidopsis) en la planta del tabaco (Nicotiana tabacum L.), utilizando como vector la bacteria Agrobacterium tumefaciens, para observar el efecto de la expresión de estos genes sobre el crecimiento de las plantas in vitro.

foto Nuria

La Dra. Nuria Alburquerque junto a los alumnus Pablo Marín Martínez y Carmen Mª Sánchez Abenza y el professor Carlos Lopesino

El otro proyecto premiado con el primer premio, titulado “Desarrollo de un sistema electrónico para la medida de la fluorescencia de clorofilas en plantas” fue llevado a cabo por los estudiantes Jorge Parra García y Jordi Germán Calle León (IES Alcántara de Alcantarilla), siendo dirigido por el Dr. José A. Hernández (CEBAS-CSIC) y el Dr. Juan Suardiaz (UPCT). En este proyecto, que constaba con una parte biológica y una parte técnica, se desarrolló un sistema electrónico de bajo coste basado en Arduino, que permitía detectar la emisión de fluorescencia de clorofilas en plantas sometidas a estreses ambientales, comparando los resultados con un equipo profesional que normalmente se usa en laboratorio. La profesora Dº Teresa de Jesús García Martínez fue la responsable de la coordinación académica.

Pepe1

El Dr. José A. Hernández y el Dr. Juan Suardiaz, junto a los estudiantes Jorge Parra y Jordi Germán Calle.


Deja un comentario

Oferta contrato predoctoral FPU 2019

Interesados en solicitar Beca FPU para realizar Tesis Doctoral en el CEBAS-CSIC, contactar con:

José A. Hernández Cortés (jahernan@cebas.csic.es).

 

RESUMEN PROYECTO DE TESIS

Efecto de la climatología invernal y la disponibilidad de agua de riego en los mecanismos antioxidantes y en la productividad del albaricoquero y el melocotonero en la Región de Murcia en un contexto de cambio climático

En las condiciones ambientales de nuestro entorno, de los cuatro grandes factores limitantes del crecimiento de las plantas, temperatura, luz, nutrientes y agua, es esta última el principal condicionante. El estrés hídrico es uno de los factores ambientales que más limita el crecimiento, desarrollo y la producción vegetal. También, muchas otras situaciones de estrés ambiental, como salinidad, altas temperaturas o heladas tienen un componente de estrés. Las plantas sufren cambios morfológicos y metabólicos significativos en respuesta a la sequía. Muchos de estos cambios parecen ser respuestas adaptativas mediante las cuales las plantas hacen frente al estrés ambiental. Sin embargo, se conoce muy poco acerca de los mecanismos bioquímicos que sustentan estas respuestas.

El objetivo del proyecto es el realizar un seguimiento a variedades de albaricoquero y melocotonero representativas de ambas cultivos en la región de Murcia, cultivadas en diferentes localizaciones geográficas y sometidas a situaciones de riego diferencial.

Se añade en el estudio, 2 variedades cultivadas en condiciones de sombreo (malla protectora antigranizo) y en ausencia de la misma, con el fin de evaluar el efecto de la alta intensidad luminosa / radiación en las necesidades hídricas. Se pretende dar recomendaciones a los agricultores en lo referente al manejo integrado de ambos cultivos.

Los ensayos comenzarán desde el momento en que produce la inducción floral (en las condiciones de Murcia, después de que los agricultores recolecten la fruta), cerrando el ciclo en la cosecha del año siguiente. Cada 2-3 semanas se analizará el estado de humedad del suelo y el potencial hídrico de las hojas. Igualmente se tomarán muestras de hoja para analizar el estado de estrés de los árboles, mediante la medida del nivel de peroxidación de lípidos, para el análisis de los contenidos de clorofila y para el análisis de las principales enzimas antioxidantes.

oferta beca fpu_1oferta beca fpu_2


Deja un comentario

Ranking de Investigadores en Murcia y en España

A pesar de que la mayor parte de mi vida científica he sido un grupo prácticamente unipersonal, es de destacar el hecho de ocupar el puesto 29 de los investigadores más citados de la Región de Murcia así como el lugar 1539 en el ranking de los investigadores más citados en España. Hay que tener en cuenta que las listas incluyen todas las áreas de conocimiento.

Igualmente, hay que tener en cuenta que el estudio está basado en las bases de datos de Google Académico, y los investigadores que no estén dados de alta en las mismas, nunca aparecerán en este tipo de estudios. Además, contabiliza cualquier tipo de citación, además de las incluidas en las revistas de impacto.

Por lo tanto, se trata de un resultado sesgado, pero da una idea de la situación de cada investigador.

ranking investigadores MurciaRanking Cientificos Españoles 1-5000


Deja un comentario

VISITA DEL GRUPO DE BIOTECNOLOGÍA DE FRUTALES (CEBAS-CSIC) AL CEIP GINÉS DÍAZ SAN CRISTÓBAL DE ALHAMA

El pasado día 17 de junio de 2019, el investigador Dr. José A. Hernández, del Grupo de Biotecnología de Frutales del CEBAS-CSIC, visitó el CEIP Ginés Díaz San Cristóbal de Alhama donde organizó varias actividades de ciencia a los alumnos de 6º de primaria, donde fue recibido por los profesores Antonio Fernández Paredes y Mónica Caja. En primer lugar, les proyectó el video institucional del CEBAS y otro video sobre el cultivo in vitro de plantas. Igualmente, les dio una pequeña charla sobre el origen del CSIC y del CEBAS.exposicion CEBASexposicion CEBAS_2

A continuación, pasaron al taller de Fisiología y Bioquímica Vegetal.  Les mostró cultivos in vitro de diferentes especies vegetales: plantas de estevia, paulonia, melocotonero, rosa, raíces pilosas de zanahoria morada y callos embriogénicos de estevia resistentes a salinidad. El Dr. José Antonio les dejó un bote con plantas in vitro de rosa, subcultivadas en un medio para enraizamiento. Los alumnos irán comprobando el crecimiento de las raíces.

plantas in vitroplantas in vitro_2

Con la ayuda de algunos alumnos, se hicieron homogenados de plántulas de guisante usando morteros de porcelana. Después de centrifugar los extractos les mostró la técnica de Bradford para la cuantificación de proteínas.

La siguiente actividad estuvo relacionada con la extracción de clorofila. De nuevo, con la ayuda de tres alumnos, tomaron hojas de plántulas de guisante, troceadas en pequeños trozos, y las pusieron en contacto con etanol. Además, se les mostró diferentes tubos que contenían clorofilas de hojas de melocotonero y de albaricoquero, extraídas con acetona al 80%.

extraccion chlbanderillas

En la cuarta actividad del taller, el Dr. Hernández hizo una extracción de clorofilas en un mortero en presencia de etanol puro. Esta mezcla se puso en contacto con luz UV para mostrar la fluorescencia de las clorofilas. Al iluminar con la luz UV, el extracto de clorofilas emite luz roja.

Finalmente, y para demostrar a los alumnos que el ambiente y nuestras propias manos están llenas de microorganismos, tomamos 4 placas de medio MS y los alumnos tocaron el medio de cultivo con sus propios dedos. Estas placas se quedaron en el CEIP para que después de varios días comprueben los resultados.

placa con hongos y bacterias

A continuación, el Dr. Hernández respondió a todas las preguntas y dudas de los alumnos.


Deja un comentario

Desarrollo de un sistema electrónico “low-cost” para la medida de la fluorescencia de clorofilas en plantas

El grupo de Biotecnología de Frutales está participado de nuevo en la sexta Edición del Proyecto IDIES. El Dr. José A. Hernández (CEBAS-CSIC) ha trabajado en cooperación con el Dr. Juan Suardiaz (Profesor Titular del Departamento de Tecnología Electrónica, UPCT) y los alumnos del IES Alcántara, Jorge Parra García y Jordi Germán Calle León. Su tutora en el IES Alcántara fue la profesora Teresa de Jesús García.

El objetivo final del  proyecto fue el desarrollo de un sistema electrónico de bajo coste basado en Arduino, que permita detectar la emisión de fluorescencia de clorofilas y compararlo con un equipo profesional (IMAGIM-PAM, M-series, Heinz Walz, Effeltrich, Germany).

fluorimetro

caja 1

Arriba: Equipo IMAGIM-PAM, M-series, Walz. Abajo: Prototipo Low-Cost

Hemos comparado el prototipo fabricado (coste aproximado 100 €) con el equipo profesional (30000 €) en plantas sometidas a estrés salino. De forma cualitativa y cuantitativa, su funcionamiento es parecido al equipo profesional cuando las hojas se iluminan con luz roja (660 nm) e infrarroja cercana (850 nm), en relación con los parámetros de quenching no fotoquímico [Y(NPQ), NPQ y qN].

plantas C y 150 mm NaCl

Plantas de guisante usadas en el experimento

La respuesta que produce el equipo “Low-Cost” consiste en la propia fluorescencia de las clorofilas de las hojas. El equipo tiene luces led azules y rojas, cuyas ondas rebotan en las hojas y son de nuevo recogidas por un fotorreceptor colocado justo encima de la fuente de luz. Los datos de este receptor pasan al ordenador en una escala de 0 a 1023 bits, que son los datos que obtenemos, los cuales pueden ser transformados en µmoles de fotones m-2 s-1.

fluorescencia NaCl 150 mM

A la izquierda, resultados obtenidos con el Fluorímetro profesional, donde podemos observar un aumento de los parámetros de quenching no fotoquímico. A la derecha, los resultados numéricos (en bits) obtenidos con el prototipo low-cost.

En conclusión, este trabajo muestra como la técnica de fluorescencia de clorofilas es muy útil para valorar tanto situaciones de estrés abiótico como biótico, pudiendo analizar el efecto de dichos estreses en el cloroplasto, incluso antes de que se observen señales de síntomas en las hojas.

Estos resultados se presentarán en el VI Congreso IDIES, que se celebrará el próximo día 25 de junio de 2019 en el Palacio de Congresos Victor Villegas.


Deja un comentario

OFERTA DE PROYECTO DE TESIS DOCTORAL AYUDAS PARA LA FORMACIÓN DE PROFESORADO UNIVERSITARIO (FPU) 2018 EN EL CEBAS-CSIC

APELLIDOS Y NOMBRE DEL DIRECTOR

 

Hernández Cortés José Antonio
TÍTULO DE LA TESIS

 

Caracterización fisiológica y bioquímica de la latencia en melocotonero: Interacción entre el metabolismo de carbohidratos, perfil hormonal y señalización redox
ÁREA CIENTÍFICA

 

Ciencias Agrarias
CENTRO/INSTITUTO

 

CEBAS
COMUNIDAD AUTÓNOMA/PROVINCIA

 

Murcia
CORREO ELECTRÓNICO DEL DIRECTOR

 

jahernan@cebas.csic.es
WEBSITE GRUPO DE INVESTIGACIÓN O CENTRO/INSTITUTO

 

http://www.cebas.csic.es/dep_spain/mejora/biotecnologia/biotec_lineas.html

https://antioxidantsgroup.wordpress.com/

 


Deja un comentario

¿Se puede considerar el agua oxigenada (H2O2) como una hormona vegetal?

En 1937, Frits Went y Kenneth Thimann, en su libro “Phytohormones” definieron hormona como una sustancia que siendo producida en una parte del organismo, es transferida a otra parte donde produce un efecto fisiológico específico, caracterizándose por la propiedad de servir como mensajeros químicos.

Algunos científicos indicaron que las diferencias entre la acción de una hormona en animales y en plantas es muy grande para usar el mismo término. Las hormonas animales se producen en tejidos específicos (por ejemplo en la glándula pituitaria, en el páncreas etc…), son transportadas por el torrente sanguíneo y actúan en tejidos distantes. Sin embargo, la mayoría de las células vegetales son capaces de producir hormonas, sus mecanismos de transporte son diversos y pueden afectar a cortas y a largas distancias, es decir, en el mismo lugar de producción o en células más distantes. Las hormonas animales son transportadas por la sangre, mientras que las fitohormonas se transportan vía xilema y/o floema.

También existen similitudes en la función de las hormonas en animales y en vegetales: son activas a bajas concentraciones y funcionan como señales químicas, por lo que el término de hormona también se acepta para describir a este tipo de moléculas en plantas. Sin embargo, y para evitar confusiones con animales, se introdujo el término de fitohormona para referirnos a estas sustancias en plantas.

El H2O2 es uno de los metabolitos redox más importante

 A altas concentraciones induce daños oxidativos a macromoléculas biológicas que puede dar lugar a muerte celular. Sin embargo, a bajas concentraciones, el H2O2 puede actuar como una molécula señalizadora y en muchos aspectos se asemeja a una fitohormona.

A diferencia de otras especies reactivas del oxígeno (ROS), el H2O2 es una molécula relativamente estable, con una vida media de milisegundos (ms). Su concentración en tejidos vegetales oscila aproximadamente sobre 1 µmol por gramo de peso fresco en condiciones normales (Cheeseman et al 2006).

En las células vegetales, el H2O2 se produce por diferentes rutas (Fig 1):

Fotorrespiración

Cadenas de transporte electrónico

Reacciones redox

                La mayoría de H2O2 intracelular se produce a partir del Os, en una reacción escalonada en la que el radical superóxido (O2.-) es el intermediario. En situaciones de estrés ambiental, el cloroplasto y la mitocondria generan una elevada producción de O2.-. Este anión es dismutado hasta H2O2 tanto de forma no enzimática, en una reacción dependiente del pH, como de forma enzimática por acción de las superóxido dismutasas (SODs).

En el apoplasto, las NADPH oxidasas y las POXs de clase III de pared celular son también responsables de la formación de H2O2. Las NADPH oxidasas generan O2.- empleando el poder reductor del NADPH citosólico. Posteriormente, el O2.- generado dismuta a H2O2 por acción enzimática de la SOD. La degradación de aminas y poliaminas, por acción de amino oxidasas dependientes de Cu y de poliamina oxidasa, es también fuente de H2O2 en plantas.

                Sin embargo, el principal sitio de generación de H2O2 en las células vegetales es el peroxisoma. Este orgánulo contiene diferentes enzimas que generan H2O2: SOD, amino oxidasa, acil-CoA oxidasa, glicolato oxidasa, uricasa, sulfato oxidasa, aldehído oxidasa, sarcosina oxidasa y xantina oxidasa.

                La β-oxidación de ácidos grasos, vía acil-CoA, genera H2O2.  Este es un proceso importante durante la germinación de semillas que contienen glioxisomas. En tejidos fotosintéticos, la producción de H2O2 en el peroxisoma tiene lugar durante la fotorrespiración (ver https://bit.ly/2ycmlSf), contribuyendo aproximadamente al 70% de la producción total del H2O2 de la célula vegetal.

Esquema 1

Fig. 1. Fuentes de generación de peróxido de hidrógeno

 

Enzimas eliminadoras de H2O2

EL contenido endógeno de H2O2 en células vegetales es mayor que el de células animales o en bacterias. LA acumulación descontrolada de H2O2 puede dar lugar a la generación de radicales hidroxilo mediante una reacción de Fenton (ver https://bit.ly/2PbLRy8). Por ello, es necesario un sistema eficiente  para la eliminación de H2O2 (y de O2.-). En este sentido, las plantas disponen de un eficiente arsenal de defensa frente a las ROS, incluido el H2O2. Las defensas enzimáticas incluyen catalasas, peroxidasas (POXs), ascorbato peroxidasas (APXs), glutatión peroxidasas (GPXs) (ver https://bit.ly/2y04tut). Igualmente, diferentes compuestos no enzimáticos (antioxidantes no enzimáticos) tienen una gran importancia en la eliminación de H2O2 (ver https://bit.ly/2O5DLur).

Transporte

No existe ninguna evidencia del transporte del H2O2 a largas distancias. Sin embargo, al ser la ROS menos reactiva, esta propiedad le permite viajar a las células vecinas o a otros compartimentos celulares y poder así actuar como molécula señalizadora (Winterbourn 2017). En este sentido, si el H2O2 es capaz de escapar de los mecanismos de eliminación (antioxidantes) y si no es reducido a .OH, podría difundir más libremente desde el sitio de generación y alcanzar su posible blanco.

Peroxiporinas: En el año 2000, los investigadores Henzler y Steudle describieron la existencia de una subclase de acuaporina que llamaron peroxiporina implicada en el transporte de H2O2. LAS acuaporinas vegetales son una clase de proteínas transportadoras de agua y de otras moléculas, incluyendo CO2 y nutrientes, cumpliendo una función en el crecimiento y desarrollo vegetal.

Señalización

Está muy demostrado que el efecto del H2O2 depende de su dosis y que a concentraciones bajas actúa como molécula señalizadora. A pesar de que el H2O2 es rápidamente eliminado,  de forma enzimática, dichos mecanismos enzimáticos son menos efectivos a concentraciones muy bajas, del orden de 10 nM, lo que  permite al H2O2 actuar como segundo mensajero (Winterbourn 2017). Las proteínas son un objetivo primario de las ROS y hay dos modos de acción mediante los cuales el H2O2 es percibido: La oxidación de residuos de aminoácidos y la reacción con un intermedio reactivo.

La oxidación directa de residuos cisteinil y de cadenas laterales tiólicas puede actuar como sensor y/o interruptor en la traducción de señales y en la regulación de la actividad enzimática (Cerny et al 2018). Los residuos de cisteína pueden sufrir modificaciones reversibles o irreversibles. Enzimas clave del Ciclo de Calvin y del metabolismo del carbohidratos son oxidados en respuesta a H2O2 (Rubisco, ribulosa-5-fosfato-quinasa, gliceraldehido-3-fosfato deshidrogenasa, transcetolasa, sedoheptulosa-1,7-bifosfatasa…).

La oxidación de residuos de metionina no parece estar relacionada con la señalización del H2O2 pero su primera forma oxidasa, la metionina sulfóxido, es el producto de una modificación postraducional, que puede ser revertida por acción de la metionina sulfóxido reductasa (Cerny et al 2018). Esta enzima aumenta la tolerancia a H2O2, lo que indica que los residuos de metionina podrán tener una función en la respuesta a estrés inducida por H2O2. También se ha demostrado que la actividad GSH-S-transferasa se reduce por la oxidación de metionina (Hardin et al 2009).

Sin embargo, las modificaciones postraduccionales de proteínas inducido por H2O2 no se limita a residuos de cisteína y metionina

Factores de transcripción (FT)

El H2O2 puede interaccionar con diferentes FT favoreciendo tanto su activación como su inactivación. Los factores de HsfA (Heat-Shock Transcription Factors) tienen que formar trímeros para activar genes inducibles por choques térmicos, como la APX. Este mecanismo de trimerización requiere la formación de puentes di-sulfuro intramoleculares que podría estar directamente inducido por el H2O2.

La familia de FT NAC está implicada en procesos de desarrollo y en diferentes procesos biológicos, incluyendo senescencia y respuestas a estrés abiótico.  Muchos genes de esta familia son inducidos por H2O2.

El inhibidor de la ARN polimerasa citosólica se activa por H2O2 a través del sistema tiorredoxina y se transloca al núcleo.

Los FT WRKY30, WRKY53 y WRKY46 se inducen en respuesta a O3 y H2O2. El FT WRKY70 interactúa en la respuesta del FT ZAT7 (una proteína de dedo de Zinc) con el H2O2. El FT ZAT12, que también responde a H2O2, media en la absorción de Fe en respuesta a deficiencias de dicho nutriente (ver en Cerny et al 2018).

El Ca2+ es un segundo mensajero implicado en numerosos procesos en plantas. Muchas respuestas requieren un efecto combinado del H2O2 y el Ca2+. Por ejemplo, la apertura de canales de H2O2 dependientes de Ca. La proteína Calmodulian dependiente de Ca activa la enzima catalasa (eliminadora de H2O2) y una fosforilación dependiente de Ca activa las NADPH oxidasas (que genera O2.- que posteriomente dismuta a H2O2).

Interacción H2O2/Fitohormonas

Diferentes autores han mostrado la existencia de una interacción entre el estado redox celular y las hormonas vegetales. Las ROS, además de mediar rutas relacionadas con estrés, son componentes clave de las redes de señalización de las fitohormonas. En respuesta a diferentes hormonas (ABA, auxinas, brasinoesteriodes, citoquininas, SA , JA, etc…) se ha detectado cambios en los niveles de proteínas relacionadas con el metabolismo del H2O2 y con el estado redox en general. En este sentido se ha descrito cambios en catalasa, SOD, APX, POXs, peroxirredosinas, etc… (revisado en Cerny et al 2018).

Algunas enzimas implicadas en el metabolismo de hormonas generan H2O2, como ocurre con la ABA aldehído oxidasa, auxina aldehído oxidasa, monooxigenasas etc…

Del mismo modo, se ha descrito como el H2O2 actúa sobre el metabolismo de algunas hormonas como el ABA. En este sentido, tratamientos de semillas de guisante con H2O2 reducen los niveles de ABA (Barba-Espín et al 2010). Este efecto está mediado con el aumento de los niveles de expresión del gen CYP707A2, que codifica para la enzima ABA 8′-hidroxilasa, implicada en el catabolismo de ABA (Liu et al., 2010). Sin embargo, la inducción de genes relacionados con el catabolismo del ABA por H2O2 requiere también la participación del NO (Liu et al 2010). Además, estos mismos autores han descrito la mediación del H2O2 en la regulación de genes implicados en la biosíntesis de las GAs (GA 20-oxidasa, GA 3-oxidasa y  GA 2-oxidasa).

La señalización por etileno se induce en respuesta a la acumulación de H2O2 y el receptor del etileno ETR1 puede percibir el H2O2 directamente de una manera independiente de etileno (Desikan et al 2005).

Señalización de la luz

La percepción de la luz azul por criptocromo está acoplada a la producción de H2O2, mientras que el fitocromo B también modula el metabolismo de ROS en raíces vía síntesis y transporte del ABA (Consentino et al 2015 ; Ha et al. 2018).

Germinación

Durante la germinación de semillas la activación del metabolismo aumenta los niveles de producción de ROS, incluyendo el H2O2. La germinación comienza con la absorción de agua por parte de la semilla seca, y termina con la elongación del eje embrionario y la protrusión de la radícula. Durante este proceso, se activa la respiración que proporciona energía, se degradan proteínas de reserva para proporcionar energía y aportar aminoácidos para las nuevas proteínas que se sinteticen, etc…Hay que pensar, que la semilla, en cuanto empiece a tomar agua va a activar su metabolismo en mitocondrias, peroxisomas, glioxisomas, y por tanto empezará a producir ROS. Además, la activación de la NADPH oxidasa también genera O2.- (y por tanto H2O2).

Trabajando sobre el efecto del H2O2 sobre la germinación de semillas de guisante, Barba-Espín et al (2011) propusieron  un modelo, según el cual el H2O2 podría inducir un descenso de ABA en la semilla dependiente de MAPK e inducir la carbonilación de proteínas de reserva, favoreciendo su movilización, y de enzimas glucolíticas, lo que estimularía el ciclo de las pentosas fosfato (Job et al. 2005). La activación de dicho ciclo proporcionaría NADPH para el sistema tiorredoxina, implicado en la germinación y en el desarrollo de plántulas (Lozano et al. 1996). Alternativamente, el H2O2 podría actuar, directa o indirectamente en el embrión alterando el transporte de ABA y/o induciendo un catabolismo de esta hormona, lo que favorecería la germinación. Finalmente, el descenso de ABA podría inducir un descenso en ACC, lo que favorecería la emergencia de la radícula a las 24 h de tratamiento con H2O2  (Fig 2) (Barba-Espín et al., 2011).

esquema modelo H2O2 guisante

Fig 2. Modelo propuesto por Barba-Espín et al (2011) sobre la función clave del H2O2 en la germinación y crecimiento temprano en guisante.

Por ello, un control de los niveles de ROS, por parte de los mecanismos de defensa antioxidantes, va a resultar de gran importancia durante el proceso de germinación (ver https://bit.ly/2QvH1fw).

Desarrollo de raíces

Las auxinas son las hormonas clave en la regulación del crecimiento de la raíz y es conocido que las auxinas median cambios en los niveles de H2O2, promoviendo el crecimiento celular y la formación de raíces laterales (Su et al 2016).

Desarrollo de tallos

El crecimiento y desarrollo de tallos está dirigido por las hormonas auxinas y citoquininas. Las auxinas inducen las POXs de pared celular y la NADPH oxidasa para generar ROS, favorecer el debilitamiento de la pared celular y favorecer la elongación celular (Mangano et al 2017). A su vex, se ha descrito que el H2O2 puede mediar en la dominancia apical y la epinastia foliar (Sandalio et al 2016).

Movimiento de estomas

 El mecanismo de cierre estomático mejor descrito es el mediado por ABA, que actúa en conexión de otras señales como los iones Ca2+, NO, H2O2 y procesos de fosforilación (https://bit.ly/2O7TXeQ). Las células guarda pueden generar H2O2 por diversas vías, incluyendo las actividades enzimáticas amino oxidasa, POXs y NADPH oxidasa. A su vez, esta última proteína está regulada por iones Ca2+ y por procesos de fosforilación mediados por la proteína quinasa OST1. A su vez, la proteína OST1 está regulada por ABA.

El SA SA reduce la conductancia estomática en una forma dependiente de la dosis. Este efecto parece ser dependiente de la generación de ROS ya que la aplicación de enzimas antioxidantes (Catalasa, SOD) suprime este efecto. El cierre estomático inducido por SA era prevenido por tratamientos con salicilhidroxámico, un inhibidor de POXs de pared celular, pero no por DPI (inhibidor de  NADPH oxidasa). Esto sugiere que el cierre de estomas inducido por SA está mediado con la producción de H2O2 debido a las POXs de pared celular (Khokon et al 2011; Miura et al 2013). En este proceso también interviene los iones Ca2+, ya que el tratamiento con un quelante de Ca2+ (EGTA) reduce el efecto del SA en el cierre de estomas (Khokon et al 2011).

Por lo tanto, se puede sugerir que la aplicación de SA podría tener una aplicación práctica en Agricultura con el fin de aumentar la tolerancia de las plantas a condiciones de falta de agua (Hernández et al 2017).

Polinización

El H2O2 y otras ROS tienen una función clave en la navegación de polen y la fusión de gametofitos. Las plantas angiospermas (las que producen verdaderas flores) han desarrollado barreras reproductivas para evitar la autofecundación, conocido como autoincompatibilidad (Serrano et al 2015). Los niveles de H2O2 son elevados durante una reacción incompatible, pudiendo ocasional una muerte celular programada. Sin embargo, en una reacción compatible, los niveles de H2O2 disminuyen en el estigma favoreciendo el desarrollo del tubo polínico. La acumulación de ROS, especialmente la del radical hidroxilo que se genera en gran parte a partir de H2O2, es crucial para la ruptura del tubo polínico y la liberación de células espermáticas (Duan et al 2014).

Maduración de frutos

Huan et al. (2016) propusieron que el H2O2 actúa como una molécula de señalización en la etapa intermedia del desarrollo de frutos de melocotón, actuando como una molécula tóxica importante, ya que estimula el proceso de peroxidación de lípidos y un estrés oxidativo, durante la etapa tardía de la maduración del fruto (Huan et al 2016). Otros autores han observado cambios en el estado redox durante diferentes etapas de la maduración de frutos de tomate encontrando un aumento importante en los contenidos de H2O2 en el denominado punto de ruptura (definido como el cambio de color en el fruto) (Kumar et al 2016). El aumento de H2O2 parece estar regulado por etileno, que se correlaciona con un aumento de la tasa respiratoria y de la producción de ROS (Hurr et al 2013).

Senescencia y Muerte celular

La senescencia es un proceso oxidativo regulado genéticamente que implica una degradación general de las estructuras celulares y las enzimas y la movilización de los productos de degradación a otras partes de la planta. La senescencia se caracteriza principalmente por el cese de la fotosíntesis, la desintegración de las estructuras de los orgánulos, las pérdidas intensivas de clorofila y proteínas y los aumentos dramáticos en la peroxidación lipídica y de la permeabilidad de la membrana. Estos últimos cambios se deben principalmente a un aumento  en la generación de ROS que tiene lugar en los tejidos vegetales durante el proceso de senescencia (del Río et al 1998). En dichos tejidos, el H2O2 puede mediar procesos de muerte celular programada junto con cambios en hormonas relacionadas con estrés como SA o etileno (Cerny et al 2018). Se ha observado que líneas de plantas transgénicas que presentan bajos niveles de H2O2 tienen una senescencia retardada (Bieker et al 2012). Plantas de tabaco, que sobreexpresan los transgenes cytsod y/o cytapx (codifican para SOD o APX citosólicas) además de ser más tolerantes al estrés hídrico, presentaron una senescencia retardada (ver figura 3). Estas plantas, además de presentar más actividad SOD y/o APX también mostraron niveles mayores de otras actividades antioxidantes, como catalasa, POX, etc…) (Faize et al 2011).

Planats tabaco transgenicas

Figura 3.- Plantas transformadas de tabaco que sobreexpresan genes antioxidantes. Se puede mostrar como las plantas transformadas tienen una clorosis retardada, a diferencia de los controles, donde las hojas basales ya están totalmente cloróticas.

Respuesta a estreses ambientales

Las hormonas relacionadas con respuesta a estrés (ABA, SA, JA y etileno) emplean H2O2 en sus cascadas de señalización (Saxena et al 2016). Igualmente, el H2O2 está implicado en respuestas de aclimatación y tolerancia a diferentes estreses. En este sentido, el pre-tratamiento de plantas o semillas con H2O2 aumenta la resistencia a diferentes estreses, incluyendo salinidad, estrés hídrico, estrés térmico, etc… (Hossain et al 2015).

CONCLUSIONES

El H2O2 es una molécula señalizadora y está conectada con la ruta de señalización de diferentes fitohormonas, actuando como segundo mensajero en respuesta a diferentes condiciones ambientales y modulando el crecimiento y el desarrollo vegetal.

Su efecto en el crecimiento depende de la dosis, lo que nos lleva a pensar en el H2O2 como un regulador del crecimiento, pero ¿podríamos decir que el H2O2 es una posible hormona?

El H2O2 es producido y degradado por la misma planta en respuesta a estímulos y puede ser percibido por proteínas especializadas, elicitando respuestas a bajas concentraciones (del orden de nM).

Sin embargo, el factor limitante del H2O2 para poder considerarlo como posible hormona reside en su transporte, ya que no puede moverse a largas distancias debido a su baja estabilidad y a la presencia de diferentes moléculas eliminadoras o secuestradoras (antioxidantes enzimáticos y no enzimáticos) de H2O2.

Sin embargo, el que se considere o no al H2O2 como una fitohormona no cambia para nada su importancia en el ciclo de vida de las plantas.

Bibliografía

Barba-Espin, G., Diaz-Vivancos, P., Clemente-Moreno, M.J., Albacete, A., Faize, L., Faize, M., Perez-Alfocea, F., Hernandez, J.A., 2010. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33 (6), 981–994.

Barba-Espin, G., Diaz-Vivancos, P., Job, D., Belghazi, M., Job, C., Antonio Hernandez, J., 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34 (11), 1907–1919.

Bieker, S.; Riester, L.; Stahl, M.; Franzaring, J.; Zentgraf, U. Senescence-specific Alteration of Hydrogen Peroxide Levels in Arabidopsis thaliana and Oilseed Rape Spring Variety Brassica napus L. cv. MozartF. J. Integr. Plant Biol. 2012, 54, 540–554.

Cerný M, Hana Habánová  Miroslav Berka, Markéta Luklová,Bretislav Brzobohatý (2018) Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812; doi:10.3390/ijms19092812

Cheeseman, J.M. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 2006, 57, 2435–2444.

Consentino, L.; Lambert, S.; Martino, C.; Jourdan, N.; Bouchet, P.-E.;Witczak, J.; Castello, P.; El-Esawi, M.; Corbineau, F.; d’Harlingue, A.; et al. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol. 2015, 206,1450–1462.

del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes senescence. Plant Physiol 116:1195–1200

Desikan, R.; Hancock, J.T.; Bright, J.; Harrison, J.; Weir, I.; Hooley, R.; Neill, S.J. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 2005, 137, 831–834.

Duan, Q.; Kita, D.; Johnson, E.A.; Aggarwal, M.; Gates, L.; Wu, H.-M.; Cheung, A.Y. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 2014, 5, 3129.

Faize M, Burgos L, Faize L, Piqueras A, Nicolas, E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62: 2599-2613.

Ha, J.-H.; Kim, J.-H.; Kim, S.-G.; Sim, H.-J.; Lee, G.; Halitschke, R.; Baldwin, I.T.; Kim, J.-I.; Park, C.-M. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J. 2018, 94, 790–798.

Hardin, S.C.; Larue, C.T.; Oh, M.-H.; Jain, V.; Huber, S.C. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J. 2009, 422, 305–312.

Henzler, T.; Steudle, E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 2000, 51, 2053–2066.

Hernández JA; Díaz-Vivancos P; Barba-Espín G, Clemente-Moreno MJ (2017) On the role of salicylic acid in plant responses to environmental stresses. In: Nazar R., Iqbal N., Khan N. (eds), Salicylic Acid: A Multifaceted Hormone. Springer, Singapore Pte Ltd. 2017, pp. 17-34.

Hossain M.A., Bhattacharjee S., Armin S -M., Qian P., Xin W., Li, H.-Y., et al. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging.  Front. Plant Sci. 6:420.

Huan, C.; Jiang, L.; An, X.; Yu, M.; Xu, Y.; Ma, R.; Yu, Z. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Biochem. 2016, 104, 294–303.

Hurr, B.M.; Huber, D.J.; Vallejos, C.E.; Lee, E.; Sargent, S.A. Ethylene-induced overproduction of reactive oxygen species is responsible for the development of water soaking in immature cucumber fruit. J. Plant Physiol. 2013, 170, 56–62.

Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D. (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology 138, 790–802.

Khokon MDAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443.

Kumar, V.; Irfan, M.; Ghosh, S.; Chakraborty, N.; Chakraborty, S.; Datta, A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 2016, 253, 581–594.

Liu, Y., Ye, N., Liu, R., Chen, M., Zhang, J., 2010. H(2)O(2) mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61 (11), 2979–2990.

Lozano R.M., Wong J.H., Yee B.C., Peters A., Kobrehel K. & Buchanan B.B. (1996) New evidence for a role of thioredoxin h in germination and seedling development. Planta 200, 100–106.

Mangano, S.; Denita-Juarez, S.P.; Choi, H.-S.; Marzol, E.; Hwang, Y.; Ranocha, P.; Velasquez, S.M.; Borassi, C.; Barberini, M.L.; Aptekmann, A.A.; et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA 2017, 114, 5289–5294.

Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

Sandalio, L.M.; Rodríguez-Serrano, M.; Romero-Puertas, M.C. Leaf epinasty and auxin: A biochemical and molecular overview. Plant Sci. 2016, 253, 187–193.

Saxena, I.; Srikanth, S.; Chen, Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Front. Plant Sci. 2016, 7, 570.

Serrano, I.; Romero-Puertas, M.C.; Sandalio, L.M.; Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 2015, 66, 2869–2876.

Su, C.; Liu, L.; Liu, H.; Ferguson, B.J.; Zou, Y.; Zhao, Y.; Wang, T.; Wang, Y.; Li, X. H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J. Plant Biol. 2016, 59, 260–270.

Winterbourn, C.C. Biological Production, Detection and Fate of Hydrogen Peroxide. Antioxid. Redox Signal. 2017, 29, 541–551


Deja un comentario

V EDICIÓN DEL CONGRESO IDIES

Mañana martes, 26 de Junio de 2018, se celebrará una nueva edición del Congreso IDIES. En esta edición se presentarán 41 trabajos realizados por alumnos de primero de bachillerato de los IES: Domingo Valdivieso de Mazarrón, Juan Carlos I, Floridablanca, Infante Juan Manuel, de Murcia, IES Alcántara y Sanje de Alcantarilla, Las Salinas del Mar Menor, Ruiz de Alda de San Javier, y el IES Salvador Sandoval de las Torres de Cotillas. Los trabajos han estado dirigidos por investigadores del CEBAS-CSIC, de las Universidades de Murcia, la Politécnica de Cartagena y la Miguel Hernández de Orihuela y el IMIDA.

 

v idies

La presentación del Congreso se llevará a cabo en el Centro Social de la UMU a las 9,00.  Los trabajos de investigación se expondrán como comunicaciones orales y en sesión de posters. Al finalizar el evento, se entregará a todos los alumnos un diploma y un libro de actas del congreso por parte de la Academia de Ciencias de la Región de Murcia.

Programa 2018 (19j)