antioxidantsgroup

Plant ROS Research


Deja un comentario

Metabolismo antioxidante y fluorescencia de clorofila durante la aclimatación a condiciones ex vitro de plantas micropropagadas de Stevia rebaudiana Bertoni

En un trabajo reciente, publicado por el grupo del Dr. José A. Hernández en cooperación con el Dr. Abel Piqueras, se ha comprobado que las enzimas antioxidantes, la fluorescencia de clorofila y los niveles de peroxidación lipídica (un parámetro de estrés oxidativo)  pueden ser herramientas adecuadas para la evaluación del estado fisiológico de plantas micropropagadas de stevia durante la aclimatación a condiciones ex vitro. Estos parámetros proporcionan información muy útil para monitorizar el estado de estrés de las plantas durante el proceso de aclimatación Este trabajo tiene implicaciones prácticas, ya que las plantas clonales de stevia con un perfil conocido y estable de esteviol glucósidos son una fuente adecuada para la producción de edulcorantes y antioxidantes naturales para la dieta.

Plantas

Fases de la aclimatación de las plantas de stevia. A: Multiplicación; B: Enraizamiento: C: 2 dias aclimatación; D: 2 semanas aclimatación; E: 4 semanas aclimatación

Introducción

La aplicación de técnicas de cultivo in vitro es una poderosa herramienta de proliferación vegetativa para muchas especies vegetales [Van-Huylenbroeck et al 2000]. Sin embargo, este proceso puede limitarse debido a pérdidas significativas durante la aclimatación a condiciones ex vitro. La mejora de la actividad fotosintética es un paso crítico para alcanzar una alta tasa de supervivencia durante la aclimatación de las plántulas in vitro [Carvalho et al 2001]. En otras palabras, la activación adecuada de la fotosíntesis es el punto clave para cambiar la forma de adquirir carbono de fuentes heterotróficas o mixotróficas (condiciones in vitro) a fuentes autotróficas (condiciones ex vitro). Las plantas micropropagadas son muy susceptibles a las condiciones ambientales después de la transferencia a condiciones ex vitro. Por ejemplo, las plantas ex vitro normalmente están expuestas  a una mayor intensidad luminosa que las plantas cultivadas en condiciones in vitro. Además, la humedad relativa (HR) también es menor en condiciones ex vitro, por lo que las plantas son propensas a sufrir desecación durante la aclimatación. Ambos fenómenos, que contribuyen al daño por fotoinhibición y al estrés hídrico, pueden inducir la sobreproducción de especies reactivas de oxígeno (ROS). Sin embargo, las plantas cuentan con un mecanismo eficiente de defensa antioxidante para defenderse de los efectos nocivos de ROS. Estas defensas incluyen las enzimas del ciclo ascorbato-glutatión (ASC-GSH) (ascorbato peroxidasa (APX), monodehidroascorbato reductasa (MDHAR), deshidroascorbato reductasa (DHAR) y glutatión reductasa (GR)) y enzimas captadoras de ROS (superóxido dismutasas (SOD), peroxidasas (POX) y catalasa (CAT). El conocimiento sobre el comportamiento de la maquinaria antioxidante durante la aclimatación ex vitro es muy escaso, y solo unos pocos investigadores han estudiado los cambios en los antioxidantes enzimáticos y no enzimáticos durante este proceso [Van-Huylenbroeck et al 2000; Carvalho et al 2006; Dewir et al 2015; El-Mahrouk et al 2016].

La stevia (Stevia rebaudiana Bertoni) es un arbusto perenne perteneciente a la familia Asteraceae. Las hojas de S. rebaudiana contienen una alta concentración de esteviol glucósidos, siendo las formas prevalentes el esteviósido y el rebaudiósido A, empleados como edulcorantes naturales como sustitutos de la sacarosa [Zeng et al 2006]. Sin embargo, las semillas de stevia tienen poca viabilidad y la planta requiere condiciones específicas de humedad, luz y nutrientes. La acumulación de esteviol glucósidos en S. rebaudiana es muy variable debido a la variabilidad genética. El contenido total de esteviol glucósidos es diferente no solo entre plantas del mismo cultivar, sino también entre plantas similares en la misma etapa de desarrollo [Ceunen et al 2007]. Además, se ha observado una alta capacidad antioxidante de los extractos de hojas de S. rebaudiana, relacionados con su función como captadores de ROS [Ceunen et al 2007; Ghanta et al 2007). Estas funciones positivas se han asociado principalmente con la presencia de compuestos fenólicos [Ceunen et al 2007]. Además, se han descritos efectos positivos del esteviósido relacionados con la diabetes tipo II, la hipertensión, el síndrome metabólico y la aterosclerosis [Ceunen et al 2007]. Por lo tanto, la producción de plantas clonales in vitro con un perfil de esteviósido similar puede ser de interés comercial.

En consecuencia, este trabajo se ha centrado en la aclimatación a las condiciones ex vitro de clones de stevia, originada a partir de la micropropagación de plantas previamente caracterizadas como altos acumuladores de esteviol glucósidos [Cantabella et al 2017]. Durante el proceso de aclimatación, se siguió la evolución de diferentes parámetros, incluido el metabolismo antioxidante, la peroxidación lipídica como parámetro de estrés oxidativo y la fluorescencia de clorofila, para determinar el estrés oxidativo que las plantas de stevia podrían estar sufriendo durante el proceso antes mencionado.

Resultados y Discusión

Durante las primeras horas del proceso de aclimatación, las plantas de stevia parecían experimentar estrés debido a la modificación de las condiciones de cultivo, como se observa por el aumento en los niveles de peroxidación lipídica, medidos como TBARS. En ese sentido, se detectó un pico después de 2 días, aumentando en un 86% con respecto a los valores en la plántula (Figura 1). Posteriormente, y a medida que avanzaba el proceso de aclimatación a las condiciones ex vitro, los valores de peroxidación lipídica disminuyeron progresivamente hasta alcanzar los valores iniciales (Figura 1). Por lo tanto, se produjo un estrés oxidativo durante las primeras horas de aclimatación, indicando un posible daño a las membranas como consecuencia del cambio de condiciones de cultivo.

Fig 1

Fig 1. Datos de peroxidación de lípidos durante la aclimatación de plantas de stevia

Respecto al comportamiento de las enzimas antioxidantes,   observamos una actividad menor de la enzima monodehidroascorbato reductasa (MDHAR) que la enzima dehidroascorbato reductasa (DHAR) después de 2 días de aclimatación. Sin embargo, después de 7 días de aclimatación, las plantas de stevia activaron la ruta MDHAR para reciclar el ascorbato, que es mucho más eficiente, desde un punto de vista energético, que la ruta DHAR (Figura 2).

Fig 2

Figura 2. Evolución de las enzimas del ciclo ASC-GSH durante el procesod e aclimatación de plantas de stevia

En ese sentido, después de 2 días de aclimatación, la relación DHAR / MDHAR era casi 2. Esto sugiere que, en esa etapa, la actividad de DHAR era la vía predominante en el reciclaje de ascorbato en plantas de stevia, utilizando GSH como donante de electrones. Posteriormente, DHAR disminuyó y MDHAR aumentó progresivamente, alcanzando una relación DHAR / MDHAR de 0.22 después de 28 días de aclimatación, donde la actividad de MDHAR fue casi 5 veces mayor que la actividad de DHAR. Por lo tanto, después de 2 días de aclimatación, las plantas de stevia utilizaron la forma MDHAR, empleando NADH como poder reductor. Es necesario aclarar que la utilización de NADH para reciclar el ASC es más eficiente energéticamente que el uso de GSH. Por lo tanto, se pueden especular diferentes posibilidades para explicar la mayor actividad de DHAR en condiciones in vitro y después de 2 días de aclimatación. La primera es que, en condiciones in vitro, los medios de cultivo contenían sacarosa, por lo que las plantas tenían suficiente fuente de carbono para generar energía a través de la glucólisis y de la respiración, y por lo tanto pueden permitirse el uso de GSH para reciclar ASC (la “forma ineficiente”). La segunda posibilidad es que después de 2 días del proceso de aclimatación, las plantas sufrieron un estrés oxidativo, según los datos de peroxidación lipídica. Dado que la sobreexpresión de DHAR se ha asociado con la tolerancia al estrés ambiental [Eltayeb et al 2006], la mayor actividad de DHAR observada en esta etapa podría tener una función para hacer frente al estrés resultante de las condiciones de aclimatación. La tercera explicación está relacionada con el papel de DHAR en el crecimiento y desarrollo de las plantas [Potters et al 2012]. Probablemente, después de 2 días de aclimatación, el aumento de DHAR podría tener una función en los procesos de crecimiento y desarrollo de las plantas. También observamos que la actividad de MDHAR aumentó después de 7 días de aclimatación. En esta etapa, la fotosíntesis parecía funcionar correctamente, como lo observan los valores de fluorescencia de clorofila y ETR. Por lo tanto, a partir de ese momento, las plantas produjeron sus propios azúcares y energía para apoyar el crecimiento de las plantas. Probablemente, por esta razón, las plantas cambiaron la forma de reciclar el ascorbato de una manera eficiente, a través de NADH.

La actividad GR se comportó de manera similar a la actividad MDHAR. En ese sentido, GR aumentó a medida que avanzó el proceso de aclimatación de las plantas, alcanzando sus valores máximos después de 21 y 28 días de aclimatación (incrementos de 4.2 y 3.2 veces, respectivamente) (Figura 2).

Las actividades superóxido dismutasa (SOD) y catalasa (CAT) mostraron un pico de actividad después de 7 días de aclimatación (Figura 3), lo que sugiere una protección contra las ROS (especies reactivas de oxígeno) que se podrían estar generando como consecuencia del cambio de cultivo in vitro a ex vitro. La actividad peroxidasa (POX) aumentó aproximadamente 2 veces después de 2 días de aclimatación y permaneció alta hasta el día 14 (Figura 3), probablemente relacionada con el endurecimiento de la pared celular y los procesos de lignificación.

Fig 3

Figura 3. Evolución de las enzimas SOD, CAT y POX durante el proceso de aclimatación de plantas de stevia

Después de 2 días de aclimatación, las plantas mostraron valores más altos de los parámetros de quenching no fotoquímico [Y (NPQ), Y (NO), NPQ y qN] y valores bajos de los parámetros de quenching fotoquímico [Y (II), qP] (Figura 4), así como de la velocidad de transporte de electrones (ETR) (Figura 5). Durante el proceso de aclimatación, se observó una disminución progresiva en los parámetros de quenching no fotoquímicos y un aumento constante en los parámetros de quenching fotoquímico. En ese sentido, Y (NPQ) disminuyó progresivamente, reduciendo sus valores en un 40% y 50% después de 21 y 28 días de aclimatación, respectivamente (Figura 4). Paralelamente, Y (NO) disminuyó durante el ensayo de aclimatación, alcanzando una disminución cercana al 40% y 30% después de 21 y 28 días de aclimatación, respectivamente (Figura 4). NPQ muestra aumentos y disminuciones durante el proceso de aclimatación. Al principio, después de 7 días de aclimatación, este parámetro aumentó en un 22%. Luego, el valor NPQ aumentó en un 63% después de 14 días de aclimatación en relación con el valor precedente (día 7). Una semana después (día 21), nuevamente el valor NPQ aumentó en un 29% en comparación con el valor observado en la segunda semana (14 días). Finalmente, después de 28 días de aclimatación, se observó una disminución del 30% en el parámetro NPQ en relación con el valor observado después de 21 días (Fig. 4). Sin embargo, aunque los valores de qN disminuyeron durante el proceso de aclimatación, los cambios producidos no fueron estadísticamente significativos (Figura 4). Tanto NPQ como Y (NPQ) están relacionados con la energía disipada como calor por un mecanismo regulado (es decir, el ciclo de xantofila) [Zhang et al 2012]. En contraste, Y (NO) refleja la fracción de energía disipada pasivamente como calor y fluorescencia, principalmente debido a los centros de reacción del PSII cerrados. Por lo tanto, los valores altos de Y (NO) están relacionados con la incapacidad de las plantas para protegerse del exceso de luz. En ese sentido, después de 2 días de aclimatación, las plantas de stevia mostraron los valores más altos de Y (NO), que disminuyeron progresivamente durante el proceso de aclimatación, lo que refleja una mejor regulación [Klughammer et al 2008]. Por otro lado, valores altos de los parámetros de quenching no fotoquímicos indicaban que las plantas estaban sufriendo un estrés. Sin embargo, a medida que la planta se adaptaba a las nuevas condiciones ex vitro, estos parámetros disminuyeron.

Fig 4

FIgura 4. Evolución de los parámetros de fluorescencia de clorofilas durante el proceso de aclimatación de plantas de stevia

Con respecto a los parámetros de quenching fotoquímico (Y (II) y qP), se produjo un aumento progresivo durante la aclimatación. En ambos casos, los valores aumentaron cerca de 3 veces después de 7 y 14 días de aclimatación, y aproximadamente 5 veces después de 21 y 28 días del proceso (Figura 4). Fv / Fm mostró los valores más bajos después de 2 días de aclimatación. Este parámetro aumentó después de 7 y 14 días, y luego disminuyó ligeramente después de 21 y 28 días de aclimatación, pero sus valores permanecieron estadísticamente más altos que los valores iniciales (Tabla 1). Los cambios observados en Y (II) y qP se correlacionaron con la evolución de los valores de ETR, alcanzando un aumento de casi 6 veces al final (28 días) del proceso de aclimatación (Figura 5). Esta respuesta de los parámetros de fluorescencia de clorofilas indicaba una mayor eficiencia fotosintética conforme avanzaba el proceso de aclimatación a las condiciones ex vitro.

Fig 5

Figura 5. Evolución de la tasa de transporte electrónico durante el proces de aclimatación de plantas de stevia

Conclusiones

En conjunto, los datos sugirieron que las enzimas antioxidantes, la peroxidación lipídica y los parámetros de fluorescencia de clorofila pueden ser herramientas adecuadas para la evaluación del estado fisiológico de las plantas micropropagadas durante la aclimatación a condiciones ex vitro de plantas de stevia, proporcionando información muy útil para controlar el estado de estrés de las plantas durante el proceso de aclimatación. Este trabajo tiene implicaciones prácticas, ya que las plantas clonales de stevia con un perfil conocido y estable de esteviol glucósidos son una fuente adecuada de edulcorantes y antioxidantes naturales para una dieta sana.

Para más información:

José Ramón Acosta-Motos, Laura Noguera Vera, Gregorio Barba-Espín, Abel Piqueras, José A. Hernández (2019) Antioxidant metabolism and chlorophyll fluorescence during the acclimatisation to ex vitro conditions of micropropagated Stevia rebaudiana Bertoni plants. Antioxidants, Special Issue “Antioxidants and Foods”, 8, 615.  (https://www.mdpi.com/2076-3921/8/12/615)

 

Bibliografía

Cantabella, D.; Piqueras, A.; Acosta-Motos, J.R.; Bernal-Vicente, A.; Hernandez, J.A.; Diaz-Vivancos, P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol. Biochem. 2017, 115, 484–496.

Carvalho, L.C.; Osorio, M.L.; Chaves, M.M.; Amâncio S. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tissue Organ Cult. 2001, 67, 271–280.

Carvalho, L.C.; Vilela, B.J.; Vidigal, P.; Mullineaux, P.M.; Amâncio, S. Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. Int. J. Plant Sci. 2006, 167, 759-770.

Ceunen, S.; Geuns, J.M.C. Steviol Glycosides: Chemical Diversity, Metabolism, and Function. J. Nat. Prod. 2013, 76, 1201−1228.

Dewir, Y.H.; El-Mahrouk, M.E.; Al-Shmgani, H.S.; Rihan, H.Z.; Teixeira da Silva, J.A.; Fuller, M.P. Photosynthetic and biochemical characterization of in vitro-derived African violet (Saintpaulia ionantha H. Wendl) plants to ex vitro conditions. J. Plant Interact. 2015, 10, 101-108.

El-Mahrouk, M.E.; Dewir, Y.H.; Murthy, H.N.; Rihan, H.Z.; Al-Shmgani, H.S.; Fuller, M.P. Effect of photosynthetic photon flux density on growth, photosynthetic competence and antioxidant enzymes activity during ex vitro acclimatization of Dieffenbachia cultivars. Plant Growth Regul. 2016, 79, 29–37.

Eltayeb, A.E.; Kawano, N.; Badawi, G.H.; Kaminaka, H.; Sanekata, T.; Morishima, I.; Shibahara, T.; Inanaga, S.; Tanaka, K. Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol. Plant. 2006, 127, 57–65.

Ghanta, S.; Banerjee, A.; Poddar, A.; Chattopadhyay, S. Oxidative DNA Damage Preventive Activity and Antioxidant Potential of Stevia rebaudiana (Bertoni) Bertoni, a Natural Sweetener. J. Agr.Food Chem. 2007, 55, 10962-10967.

Klughammer, C.; Schreiber, U. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes (PAN) 2008, 1, 27-35

Potters, G.; Horemans, N.; Caubergs, R.J.; Asard, H. Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension. Plant Physiol. 2012, 124, 17-20.

Van-Huylenbroeck, J.M.; Piqueras, A.; Debergh, P.C. The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci. 2000, 155, 59-66.

Zeng, J.; Cheng, A.; Lim, D.; Yi, B.; Wu, W. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2013, 61, 5720-5726.

Zhang, Q.Y.; Wang, L.Y.; Kong, F.Y.; Deng, Y.S.; Li, B.; Meng, Q.W. Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol. Plant. 2012, 146, 363–373.

 


Deja un comentario

Mandelonitrile-associated salicylic acid biosynthesis in peach under abiotic and biotic stresses

Diaz-Vivancos P; Bernal-Vicente A; Petri C; Cantabella D; Hernández JA

(Poster presented at the SMPR2019 congress (Valencia, 10-11 December 2019)

Abstract

Even though that salicylic acid (SA) is a key regulator of plant stress responses and other biological processes, its biosynthetic pathways have not been fully characterized. The proposed SA synthesis originates from chorismate by two distinct pathways: isochorismate and phenylalanine (Phe) ammonia-lyase (PAL) pathways. Cyanogenesis is the process related to the release of hydrogen cyanide from endogenous cyanogenic glycosides (CNglcs), and it has been linked to plant plasticity improvement. The main CNglcs in peach are prunasin and amygdalin, with mandelonitrile (MD), synthesized from Phe, controlling their turnover.

Using [13C]-labelled compounds and metabolomic analysis, we showed that MD, and hence CNglcs turnover, is involved, at least in part, in SA biosynthesis in peach plants. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway). Moreover, MD treatment modulated the H2O2 levels and had a pleiotropic effect on abscisic acid (ABA) and jasmonic acid (JA) levels (data not shown). Under the stress conditions, however, the contribution of this SA biosynthetic pathway from MD to the total SA pool does not seem to be important. Nevertheless, MD treatment not only increased SA levels, but also improved peach plants performance under the stressful conditions. In fact, MD provided partial protection against Plum pox virus (PPV) infection and stimulated the accumulation of phytotoxic ions in roots in PPV- and NaCl-stressed peach seedlings respectively.

Thus, we proposed a third pathway, alternative to the PAL pathway, for SA synthesis in peach plants, linking SA biosynthesis and cyanogenesis (Fig. 1). This proposed pathway seems to be functional under stress conditions, although the fact that CNglcs may be operating more broadly than by influencing SA pathways and signaling con not be ruled out.

Material and Methods

Plant material

The assays were performed on GF305 peach (Prunus persica L.) plants, under both greenhouse and in vitro conditions. For ex vitro assays, after submitting the GF305 peach seedlings to an artificial rest period in a cold chamber to ensure uniformity and fast growth, seedlings were grown in 2-L pots in an insect-proof greenhouse and distributed into three batches (control and MD- and Phe-treated) of 15 plants each. Plants were irrigated twice per week with water (control) and 1 mM MD or 1 mM Phe for 7 weeks. None of the treatments affected plant growth and development. For in vitro assays [13C]-labeled compounds were used, and 200 mM MD- or Phe-alpha[13C] (Campro Scientific GmbH, Germany) was added to the micropropagation medium during two subcultures. This concentration was selected after carrying out a preliminary assay using concentrations of both compounds ranging from 50 to 1000 mM; 200 mM was the highest concentration that did not show any deleterious effect on the development of micropropagated peach shoots.

Metabolomic analysis

The levels of Phe, MD, amygdalin, BA and SA were determined in in vitro micropropagated shoots at the Metabolomics Platform at CEBAS-CSIC (Murcia, Spain).

SA levels in peach seedlings

The SA levels in leaves of GF305 seedlings treated with MD or Phe were determined using a UHPLC-mass spectrometer (Q-Exactive, ThermoFisher Scientific) at the Plant Hormone Quantification Platform at IBMCP (Valencia, Spain).

Extraction and enzymatic assays

The activities of ascorbate peroxidase (APX),  peroxidase (POX), catalase (CAT) and superoxide dismutase (SOD) in in vitro shoots and ex vitro leaf samples were assayed as described in Diaz-Vivancos et al. (2017) and Bernal-Vicente et al. (2018; 2019).

Results

FIG 1

Fig. 1. Proposed salicylic acid (SA) biosynthetic pathway in peach plants. Blue arrows indicate the SA biosynthesis in plants described previously. The dotted arrow indicates a putative pathway. Red arrows show the new pathway suggested for peach plants. CYP79 and CYP71, Cyt P450 monooxygenases; MDL1, mandelonitrile lyase.

FIG 2

Fig. 2. Percentage (of total amount detected) of [13C]- phenylalanine (Phe), mandelonitrile (MD) and salicylic acid (SA) in non-stressed, NaCl-stressed and Plum pox virus (PPV)-infected peach shoots micropropagated in the presence or absence of [13C]MD or [13C]Phe. Ions with an additional 1.0035 accurate mass and confirmation by isotopic distribution and spacing were defined as ions marked with 13C. Data represent the mean of at least 20 repetitions of each treatment.

FIG 3

Fig. 3 Total levels (mMg–1 FW) of amygdalin, benzoic acid, mandelonitrile, phenylalanine and salicylic acid, and mandelonitrile lyase (MDL) enzymatic activity in micropropagated peach shoots in the presence or absence of [13C]MD or [13C]Phe. Data represent the mean ± SE of at least 12 repetitions of each treatment. In each graph different letters above the columns indicate significant differences according to Duncan’s test (P< 0.05).

FIG 4

Fig. 4. Total SA level (ng g–1 DW) in the leaves of peach seedlings grown in the presence or absence of MD or Phe submitted to 34 mM NaCl (A) or PPV infection (B). Data represent the mean ± SE of at least five repetitions of each treatment. Different letters indicate significant differences according to Duncan’s test (P≤0.05).

Fig-5

Fig. 5. Summary of the differential response of MD treatment in salt-stressed and PPV-infected peach seedlings. Data from Diaz-Vivancos et al. (2017) and Bernal-Vicente et al. (2018; 2019).

TABLE 1

Table 1.- Effect of MD and Phe on H2O2-scavenging activities (APX, POX, CAT)  and SOD (H2O2-producing) activity in GF305 micropropagated shoots and seedlings. APX is expressed as nmol min-1 mg-1 protein. POX and CAT are expressed as µmol min-1 mg-1 protein. SOD as U mg-1 protein. Data represent the mean ± SE of at least four repetitions. It has been previously described that SA led to H2O2 accumulation (Durner & Klessig 1995; Rao et al. 1997).

Conclusions

We provide strong  evidences showing that CNglcs turnover is involved, at least in part, in SA biosynthesis in peach plants under control and stress conditions.

MD seems to act as a hub controlling the CNglcs turnover and the SA and amygdalin biosynthesis. MD-treated peach plants displayed increased SA levels via benzoic acid (one of the SA precursors within the PAL pathway).

We have also found evidence that this new SA biosynthetic pathway also works also under stress conditions. MD treatment improved the plant performance of peach plants under salinity or PPV-infection conditions. However, the contribution of this pathway to the SA pool does not seem to be relevant under these stress conditions.

MD also modulated the content in other stress related hormones as well as the antioxidant defenses, that could activate different redox-related signaling pathways.

Our data agrees with the previously reported role for CNglcs in oxidative stress tolerance (Gleadow & Møller 2014; Gleadow et al. 2016).

References

  • Diaz-Vivancos et al (2017) Plant & Cell Physiology 58(12): 2057–2066
  • Durner J and Klessig DF (1995) Proc. Natl. Acad. Sci. U SA 92(24): 11312-11316
  • Bernal-Vicente et al (2018) Plant Biology 20(6):986-994
  • Bernal-Vicente et al (2019) Plant Biology DOI: 10.1111/plb.13066
  • Gleadow Møller (2014) Annual Review of Plant Biology 65:155–185
  • Gleadow et al (2016) Journal of Experimental Botany 6:403-5413
  • Rao et al (1997) Plant Physiology 115:137–149.

 

This work was supported by the Spanish Ministry of Economy and Competitiveness (projects AGL2014-52563-R; RTA2017-00011-C03-02).


Deja un comentario

Desarrollo de un sistema electrónico “low-cost” para la medida de la fluorescencia de clorofilas en plantas

El grupo de Biotecnología de Frutales está participado de nuevo en la sexta Edición del Proyecto IDIES. El Dr. José A. Hernández (CEBAS-CSIC) ha trabajado en cooperación con el Dr. Juan Suardiaz (Profesor Titular del Departamento de Tecnología Electrónica, UPCT) y los alumnos del IES Alcántara, Jorge Parra García y Jordi Germán Calle León. Su tutora en el IES Alcántara fue la profesora Teresa de Jesús García.

El objetivo final del  proyecto fue el desarrollo de un sistema electrónico de bajo coste basado en Arduino, que permita detectar la emisión de fluorescencia de clorofilas y compararlo con un equipo profesional (IMAGIM-PAM, M-series, Heinz Walz, Effeltrich, Germany).

fluorimetro

caja 1

Arriba: Equipo IMAGIM-PAM, M-series, Walz. Abajo: Prototipo Low-Cost

Hemos comparado el prototipo fabricado (coste aproximado 100 €) con el equipo profesional (30000 €) en plantas sometidas a estrés salino. De forma cualitativa y cuantitativa, su funcionamiento es parecido al equipo profesional cuando las hojas se iluminan con luz roja (660 nm) e infrarroja cercana (850 nm), en relación con los parámetros de quenching no fotoquímico [Y(NPQ), NPQ y qN].

plantas C y 150 mm NaCl

Plantas de guisante usadas en el experimento

La respuesta que produce el equipo “Low-Cost” consiste en la propia fluorescencia de las clorofilas de las hojas. El equipo tiene luces led azules y rojas, cuyas ondas rebotan en las hojas y son de nuevo recogidas por un fotorreceptor colocado justo encima de la fuente de luz. Los datos de este receptor pasan al ordenador en una escala de 0 a 1023 bits, que son los datos que obtenemos, los cuales pueden ser transformados en µmoles de fotones m-2 s-1.

fluorescencia NaCl 150 mM

A la izquierda, resultados obtenidos con el Fluorímetro profesional, donde podemos observar un aumento de los parámetros de quenching no fotoquímico. A la derecha, los resultados numéricos (en bits) obtenidos con el prototipo low-cost.

En conclusión, este trabajo muestra como la técnica de fluorescencia de clorofilas es muy útil para valorar tanto situaciones de estrés abiótico como biótico, pudiendo analizar el efecto de dichos estreses en el cloroplasto, incluso antes de que se observen señales de síntomas en las hojas.

Estos resultados se presentarán en el VI Congreso IDIES, que se celebrará el próximo día 25 de junio de 2019 en el Palacio de Congresos Victor Villegas.


Deja un comentario

¿Se puede considerar el agua oxigenada (H2O2) como una hormona vegetal?

En 1937, Frits Went y Kenneth Thimann, en su libro “Phytohormones” definieron hormona como una sustancia que siendo producida en una parte del organismo, es transferida a otra parte donde produce un efecto fisiológico específico, caracterizándose por la propiedad de servir como mensajeros químicos.

Algunos científicos indicaron que las diferencias entre la acción de una hormona en animales y en plantas es muy grande para usar el mismo término. Las hormonas animales se producen en tejidos específicos (por ejemplo en la glándula pituitaria, en el páncreas etc…), son transportadas por el torrente sanguíneo y actúan en tejidos distantes. Sin embargo, la mayoría de las células vegetales son capaces de producir hormonas, sus mecanismos de transporte son diversos y pueden afectar a cortas y a largas distancias, es decir, en el mismo lugar de producción o en células más distantes. Las hormonas animales son transportadas por la sangre, mientras que las fitohormonas se transportan vía xilema y/o floema.

También existen similitudes en la función de las hormonas en animales y en vegetales: son activas a bajas concentraciones y funcionan como señales químicas, por lo que el término de hormona también se acepta para describir a este tipo de moléculas en plantas. Sin embargo, y para evitar confusiones con animales, se introdujo el término de fitohormona para referirnos a estas sustancias en plantas.

El H2O2 es uno de los metabolitos redox más importante

 A altas concentraciones induce daños oxidativos a macromoléculas biológicas que puede dar lugar a muerte celular. Sin embargo, a bajas concentraciones, el H2O2 puede actuar como una molécula señalizadora y en muchos aspectos se asemeja a una fitohormona.

A diferencia de otras especies reactivas del oxígeno (ROS), el H2O2 es una molécula relativamente estable, con una vida media de milisegundos (ms). Su concentración en tejidos vegetales oscila aproximadamente sobre 1 µmol por gramo de peso fresco en condiciones normales (Cheeseman et al 2006).

En las células vegetales, el H2O2 se produce por diferentes rutas (Fig 1):

Fotorrespiración

Cadenas de transporte electrónico

Reacciones redox

                La mayoría de H2O2 intracelular se produce a partir del Os, en una reacción escalonada en la que el radical superóxido (O2.-) es el intermediario. En situaciones de estrés ambiental, el cloroplasto y la mitocondria generan una elevada producción de O2.-. Este anión es dismutado hasta H2O2 tanto de forma no enzimática, en una reacción dependiente del pH, como de forma enzimática por acción de las superóxido dismutasas (SODs).

En el apoplasto, las NADPH oxidasas y las POXs de clase III de pared celular son también responsables de la formación de H2O2. Las NADPH oxidasas generan O2.- empleando el poder reductor del NADPH citosólico. Posteriormente, el O2.- generado dismuta a H2O2 por acción enzimática de la SOD. La degradación de aminas y poliaminas, por acción de amino oxidasas dependientes de Cu y de poliamina oxidasa, es también fuente de H2O2 en plantas.

                Sin embargo, el principal sitio de generación de H2O2 en las células vegetales es el peroxisoma. Este orgánulo contiene diferentes enzimas que generan H2O2: SOD, amino oxidasa, acil-CoA oxidasa, glicolato oxidasa, uricasa, sulfato oxidasa, aldehído oxidasa, sarcosina oxidasa y xantina oxidasa.

                La β-oxidación de ácidos grasos, vía acil-CoA, genera H2O2.  Este es un proceso importante durante la germinación de semillas que contienen glioxisomas. En tejidos fotosintéticos, la producción de H2O2 en el peroxisoma tiene lugar durante la fotorrespiración (ver https://bit.ly/2ycmlSf), contribuyendo aproximadamente al 70% de la producción total del H2O2 de la célula vegetal.

Esquema 1

Fig. 1. Fuentes de generación de peróxido de hidrógeno

 

Enzimas eliminadoras de H2O2

EL contenido endógeno de H2O2 en células vegetales es mayor que el de células animales o en bacterias. LA acumulación descontrolada de H2O2 puede dar lugar a la generación de radicales hidroxilo mediante una reacción de Fenton (ver https://bit.ly/2PbLRy8). Por ello, es necesario un sistema eficiente  para la eliminación de H2O2 (y de O2.-). En este sentido, las plantas disponen de un eficiente arsenal de defensa frente a las ROS, incluido el H2O2. Las defensas enzimáticas incluyen catalasas, peroxidasas (POXs), ascorbato peroxidasas (APXs), glutatión peroxidasas (GPXs) (ver https://bit.ly/2y04tut). Igualmente, diferentes compuestos no enzimáticos (antioxidantes no enzimáticos) tienen una gran importancia en la eliminación de H2O2 (ver https://bit.ly/2O5DLur).

Transporte

No existe ninguna evidencia del transporte del H2O2 a largas distancias. Sin embargo, al ser la ROS menos reactiva, esta propiedad le permite viajar a las células vecinas o a otros compartimentos celulares y poder así actuar como molécula señalizadora (Winterbourn 2017). En este sentido, si el H2O2 es capaz de escapar de los mecanismos de eliminación (antioxidantes) y si no es reducido a .OH, podría difundir más libremente desde el sitio de generación y alcanzar su posible blanco.

Peroxiporinas: En el año 2000, los investigadores Henzler y Steudle describieron la existencia de una subclase de acuaporina que llamaron peroxiporina implicada en el transporte de H2O2. LAS acuaporinas vegetales son una clase de proteínas transportadoras de agua y de otras moléculas, incluyendo CO2 y nutrientes, cumpliendo una función en el crecimiento y desarrollo vegetal.

Señalización

Está muy demostrado que el efecto del H2O2 depende de su dosis y que a concentraciones bajas actúa como molécula señalizadora. A pesar de que el H2O2 es rápidamente eliminado,  de forma enzimática, dichos mecanismos enzimáticos son menos efectivos a concentraciones muy bajas, del orden de 10 nM, lo que  permite al H2O2 actuar como segundo mensajero (Winterbourn 2017). Las proteínas son un objetivo primario de las ROS y hay dos modos de acción mediante los cuales el H2O2 es percibido: La oxidación de residuos de aminoácidos y la reacción con un intermedio reactivo.

La oxidación directa de residuos cisteinil y de cadenas laterales tiólicas puede actuar como sensor y/o interruptor en la traducción de señales y en la regulación de la actividad enzimática (Cerny et al 2018). Los residuos de cisteína pueden sufrir modificaciones reversibles o irreversibles. Enzimas clave del Ciclo de Calvin y del metabolismo del carbohidratos son oxidados en respuesta a H2O2 (Rubisco, ribulosa-5-fosfato-quinasa, gliceraldehido-3-fosfato deshidrogenasa, transcetolasa, sedoheptulosa-1,7-bifosfatasa…).

La oxidación de residuos de metionina no parece estar relacionada con la señalización del H2O2 pero su primera forma oxidasa, la metionina sulfóxido, es el producto de una modificación postraducional, que puede ser revertida por acción de la metionina sulfóxido reductasa (Cerny et al 2018). Esta enzima aumenta la tolerancia a H2O2, lo que indica que los residuos de metionina podrán tener una función en la respuesta a estrés inducida por H2O2. También se ha demostrado que la actividad GSH-S-transferasa se reduce por la oxidación de metionina (Hardin et al 2009).

Sin embargo, las modificaciones postraduccionales de proteínas inducido por H2O2 no se limita a residuos de cisteína y metionina

Factores de transcripción (FT)

El H2O2 puede interaccionar con diferentes FT favoreciendo tanto su activación como su inactivación. Los factores de HsfA (Heat-Shock Transcription Factors) tienen que formar trímeros para activar genes inducibles por choques térmicos, como la APX. Este mecanismo de trimerización requiere la formación de puentes di-sulfuro intramoleculares que podría estar directamente inducido por el H2O2.

La familia de FT NAC está implicada en procesos de desarrollo y en diferentes procesos biológicos, incluyendo senescencia y respuestas a estrés abiótico.  Muchos genes de esta familia son inducidos por H2O2.

El inhibidor de la ARN polimerasa citosólica se activa por H2O2 a través del sistema tiorredoxina y se transloca al núcleo.

Los FT WRKY30, WRKY53 y WRKY46 se inducen en respuesta a O3 y H2O2. El FT WRKY70 interactúa en la respuesta del FT ZAT7 (una proteína de dedo de Zinc) con el H2O2. El FT ZAT12, que también responde a H2O2, media en la absorción de Fe en respuesta a deficiencias de dicho nutriente (ver en Cerny et al 2018).

El Ca2+ es un segundo mensajero implicado en numerosos procesos en plantas. Muchas respuestas requieren un efecto combinado del H2O2 y el Ca2+. Por ejemplo, la apertura de canales de H2O2 dependientes de Ca. La proteína Calmodulian dependiente de Ca activa la enzima catalasa (eliminadora de H2O2) y una fosforilación dependiente de Ca activa las NADPH oxidasas (que genera O2.- que posteriomente dismuta a H2O2).

Interacción H2O2/Fitohormonas

Diferentes autores han mostrado la existencia de una interacción entre el estado redox celular y las hormonas vegetales. Las ROS, además de mediar rutas relacionadas con estrés, son componentes clave de las redes de señalización de las fitohormonas. En respuesta a diferentes hormonas (ABA, auxinas, brasinoesteriodes, citoquininas, SA , JA, etc…) se ha detectado cambios en los niveles de proteínas relacionadas con el metabolismo del H2O2 y con el estado redox en general. En este sentido se ha descrito cambios en catalasa, SOD, APX, POXs, peroxirredosinas, etc… (revisado en Cerny et al 2018).

Algunas enzimas implicadas en el metabolismo de hormonas generan H2O2, como ocurre con la ABA aldehído oxidasa, auxina aldehído oxidasa, monooxigenasas etc…

Del mismo modo, se ha descrito como el H2O2 actúa sobre el metabolismo de algunas hormonas como el ABA. En este sentido, tratamientos de semillas de guisante con H2O2 reducen los niveles de ABA (Barba-Espín et al 2010). Este efecto está mediado con el aumento de los niveles de expresión del gen CYP707A2, que codifica para la enzima ABA 8′-hidroxilasa, implicada en el catabolismo de ABA (Liu et al., 2010). Sin embargo, la inducción de genes relacionados con el catabolismo del ABA por H2O2 requiere también la participación del NO (Liu et al 2010). Además, estos mismos autores han descrito la mediación del H2O2 en la regulación de genes implicados en la biosíntesis de las GAs (GA 20-oxidasa, GA 3-oxidasa y  GA 2-oxidasa).

La señalización por etileno se induce en respuesta a la acumulación de H2O2 y el receptor del etileno ETR1 puede percibir el H2O2 directamente de una manera independiente de etileno (Desikan et al 2005).

Señalización de la luz

La percepción de la luz azul por criptocromo está acoplada a la producción de H2O2, mientras que el fitocromo B también modula el metabolismo de ROS en raíces vía síntesis y transporte del ABA (Consentino et al 2015 ; Ha et al. 2018).

Germinación

Durante la germinación de semillas la activación del metabolismo aumenta los niveles de producción de ROS, incluyendo el H2O2. La germinación comienza con la absorción de agua por parte de la semilla seca, y termina con la elongación del eje embrionario y la protrusión de la radícula. Durante este proceso, se activa la respiración que proporciona energía, se degradan proteínas de reserva para proporcionar energía y aportar aminoácidos para las nuevas proteínas que se sinteticen, etc…Hay que pensar, que la semilla, en cuanto empiece a tomar agua va a activar su metabolismo en mitocondrias, peroxisomas, glioxisomas, y por tanto empezará a producir ROS. Además, la activación de la NADPH oxidasa también genera O2.- (y por tanto H2O2).

Trabajando sobre el efecto del H2O2 sobre la germinación de semillas de guisante, Barba-Espín et al (2011) propusieron  un modelo, según el cual el H2O2 podría inducir un descenso de ABA en la semilla dependiente de MAPK e inducir la carbonilación de proteínas de reserva, favoreciendo su movilización, y de enzimas glucolíticas, lo que estimularía el ciclo de las pentosas fosfato (Job et al. 2005). La activación de dicho ciclo proporcionaría NADPH para el sistema tiorredoxina, implicado en la germinación y en el desarrollo de plántulas (Lozano et al. 1996). Alternativamente, el H2O2 podría actuar, directa o indirectamente en el embrión alterando el transporte de ABA y/o induciendo un catabolismo de esta hormona, lo que favorecería la germinación. Finalmente, el descenso de ABA podría inducir un descenso en ACC, lo que favorecería la emergencia de la radícula a las 24 h de tratamiento con H2O2  (Fig 2) (Barba-Espín et al., 2011).

esquema modelo H2O2 guisante

Fig 2. Modelo propuesto por Barba-Espín et al (2011) sobre la función clave del H2O2 en la germinación y crecimiento temprano en guisante.

Por ello, un control de los niveles de ROS, por parte de los mecanismos de defensa antioxidantes, va a resultar de gran importancia durante el proceso de germinación (ver https://bit.ly/2QvH1fw).

Desarrollo de raíces

Las auxinas son las hormonas clave en la regulación del crecimiento de la raíz y es conocido que las auxinas median cambios en los niveles de H2O2, promoviendo el crecimiento celular y la formación de raíces laterales (Su et al 2016).

Desarrollo de tallos

El crecimiento y desarrollo de tallos está dirigido por las hormonas auxinas y citoquininas. Las auxinas inducen las POXs de pared celular y la NADPH oxidasa para generar ROS, favorecer el debilitamiento de la pared celular y favorecer la elongación celular (Mangano et al 2017). A su vex, se ha descrito que el H2O2 puede mediar en la dominancia apical y la epinastia foliar (Sandalio et al 2016).

Movimiento de estomas

 El mecanismo de cierre estomático mejor descrito es el mediado por ABA, que actúa en conexión de otras señales como los iones Ca2+, NO, H2O2 y procesos de fosforilación (https://bit.ly/2O7TXeQ). Las células guarda pueden generar H2O2 por diversas vías, incluyendo las actividades enzimáticas amino oxidasa, POXs y NADPH oxidasa. A su vez, esta última proteína está regulada por iones Ca2+ y por procesos de fosforilación mediados por la proteína quinasa OST1. A su vez, la proteína OST1 está regulada por ABA.

El SA SA reduce la conductancia estomática en una forma dependiente de la dosis. Este efecto parece ser dependiente de la generación de ROS ya que la aplicación de enzimas antioxidantes (Catalasa, SOD) suprime este efecto. El cierre estomático inducido por SA era prevenido por tratamientos con salicilhidroxámico, un inhibidor de POXs de pared celular, pero no por DPI (inhibidor de  NADPH oxidasa). Esto sugiere que el cierre de estomas inducido por SA está mediado con la producción de H2O2 debido a las POXs de pared celular (Khokon et al 2011; Miura et al 2013). En este proceso también interviene los iones Ca2+, ya que el tratamiento con un quelante de Ca2+ (EGTA) reduce el efecto del SA en el cierre de estomas (Khokon et al 2011).

Por lo tanto, se puede sugerir que la aplicación de SA podría tener una aplicación práctica en Agricultura con el fin de aumentar la tolerancia de las plantas a condiciones de falta de agua (Hernández et al 2017).

Polinización

El H2O2 y otras ROS tienen una función clave en la navegación de polen y la fusión de gametofitos. Las plantas angiospermas (las que producen verdaderas flores) han desarrollado barreras reproductivas para evitar la autofecundación, conocido como autoincompatibilidad (Serrano et al 2015). Los niveles de H2O2 son elevados durante una reacción incompatible, pudiendo ocasional una muerte celular programada. Sin embargo, en una reacción compatible, los niveles de H2O2 disminuyen en el estigma favoreciendo el desarrollo del tubo polínico. La acumulación de ROS, especialmente la del radical hidroxilo que se genera en gran parte a partir de H2O2, es crucial para la ruptura del tubo polínico y la liberación de células espermáticas (Duan et al 2014).

Maduración de frutos

Huan et al. (2016) propusieron que el H2O2 actúa como una molécula de señalización en la etapa intermedia del desarrollo de frutos de melocotón, actuando como una molécula tóxica importante, ya que estimula el proceso de peroxidación de lípidos y un estrés oxidativo, durante la etapa tardía de la maduración del fruto (Huan et al 2016). Otros autores han observado cambios en el estado redox durante diferentes etapas de la maduración de frutos de tomate encontrando un aumento importante en los contenidos de H2O2 en el denominado punto de ruptura (definido como el cambio de color en el fruto) (Kumar et al 2016). El aumento de H2O2 parece estar regulado por etileno, que se correlaciona con un aumento de la tasa respiratoria y de la producción de ROS (Hurr et al 2013).

Senescencia y Muerte celular

La senescencia es un proceso oxidativo regulado genéticamente que implica una degradación general de las estructuras celulares y las enzimas y la movilización de los productos de degradación a otras partes de la planta. La senescencia se caracteriza principalmente por el cese de la fotosíntesis, la desintegración de las estructuras de los orgánulos, las pérdidas intensivas de clorofila y proteínas y los aumentos dramáticos en la peroxidación lipídica y de la permeabilidad de la membrana. Estos últimos cambios se deben principalmente a un aumento  en la generación de ROS que tiene lugar en los tejidos vegetales durante el proceso de senescencia (del Río et al 1998). En dichos tejidos, el H2O2 puede mediar procesos de muerte celular programada junto con cambios en hormonas relacionadas con estrés como SA o etileno (Cerny et al 2018). Se ha observado que líneas de plantas transgénicas que presentan bajos niveles de H2O2 tienen una senescencia retardada (Bieker et al 2012). Plantas de tabaco, que sobreexpresan los transgenes cytsod y/o cytapx (codifican para SOD o APX citosólicas) además de ser más tolerantes al estrés hídrico, presentaron una senescencia retardada (ver figura 3). Estas plantas, además de presentar más actividad SOD y/o APX también mostraron niveles mayores de otras actividades antioxidantes, como catalasa, POX, etc…) (Faize et al 2011).

Planats tabaco transgenicas

Figura 3.- Plantas transformadas de tabaco que sobreexpresan genes antioxidantes. Se puede mostrar como las plantas transformadas tienen una clorosis retardada, a diferencia de los controles, donde las hojas basales ya están totalmente cloróticas.

Respuesta a estreses ambientales

Las hormonas relacionadas con respuesta a estrés (ABA, SA, JA y etileno) emplean H2O2 en sus cascadas de señalización (Saxena et al 2016). Igualmente, el H2O2 está implicado en respuestas de aclimatación y tolerancia a diferentes estreses. En este sentido, el pre-tratamiento de plantas o semillas con H2O2 aumenta la resistencia a diferentes estreses, incluyendo salinidad, estrés hídrico, estrés térmico, etc… (Hossain et al 2015).

CONCLUSIONES

El H2O2 es una molécula señalizadora y está conectada con la ruta de señalización de diferentes fitohormonas, actuando como segundo mensajero en respuesta a diferentes condiciones ambientales y modulando el crecimiento y el desarrollo vegetal.

Su efecto en el crecimiento depende de la dosis, lo que nos lleva a pensar en el H2O2 como un regulador del crecimiento, pero ¿podríamos decir que el H2O2 es una posible hormona?

El H2O2 es producido y degradado por la misma planta en respuesta a estímulos y puede ser percibido por proteínas especializadas, elicitando respuestas a bajas concentraciones (del orden de nM).

Sin embargo, el factor limitante del H2O2 para poder considerarlo como posible hormona reside en su transporte, ya que no puede moverse a largas distancias debido a su baja estabilidad y a la presencia de diferentes moléculas eliminadoras o secuestradoras (antioxidantes enzimáticos y no enzimáticos) de H2O2.

Sin embargo, el que se considere o no al H2O2 como una fitohormona no cambia para nada su importancia en el ciclo de vida de las plantas.

Bibliografía

Barba-Espin, G., Diaz-Vivancos, P., Clemente-Moreno, M.J., Albacete, A., Faize, L., Faize, M., Perez-Alfocea, F., Hernandez, J.A., 2010. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33 (6), 981–994.

Barba-Espin, G., Diaz-Vivancos, P., Job, D., Belghazi, M., Job, C., Antonio Hernandez, J., 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34 (11), 1907–1919.

Bieker, S.; Riester, L.; Stahl, M.; Franzaring, J.; Zentgraf, U. Senescence-specific Alteration of Hydrogen Peroxide Levels in Arabidopsis thaliana and Oilseed Rape Spring Variety Brassica napus L. cv. MozartF. J. Integr. Plant Biol. 2012, 54, 540–554.

Cerný M, Hana Habánová  Miroslav Berka, Markéta Luklová,Bretislav Brzobohatý (2018) Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812; doi:10.3390/ijms19092812

Cheeseman, J.M. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 2006, 57, 2435–2444.

Consentino, L.; Lambert, S.; Martino, C.; Jourdan, N.; Bouchet, P.-E.;Witczak, J.; Castello, P.; El-Esawi, M.; Corbineau, F.; d’Harlingue, A.; et al. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol. 2015, 206,1450–1462.

del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes senescence. Plant Physiol 116:1195–1200

Desikan, R.; Hancock, J.T.; Bright, J.; Harrison, J.; Weir, I.; Hooley, R.; Neill, S.J. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 2005, 137, 831–834.

Duan, Q.; Kita, D.; Johnson, E.A.; Aggarwal, M.; Gates, L.; Wu, H.-M.; Cheung, A.Y. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 2014, 5, 3129.

Faize M, Burgos L, Faize L, Piqueras A, Nicolas, E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62: 2599-2613.

Ha, J.-H.; Kim, J.-H.; Kim, S.-G.; Sim, H.-J.; Lee, G.; Halitschke, R.; Baldwin, I.T.; Kim, J.-I.; Park, C.-M. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J. 2018, 94, 790–798.

Hardin, S.C.; Larue, C.T.; Oh, M.-H.; Jain, V.; Huber, S.C. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J. 2009, 422, 305–312.

Henzler, T.; Steudle, E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 2000, 51, 2053–2066.

Hernández JA; Díaz-Vivancos P; Barba-Espín G, Clemente-Moreno MJ (2017) On the role of salicylic acid in plant responses to environmental stresses. In: Nazar R., Iqbal N., Khan N. (eds), Salicylic Acid: A Multifaceted Hormone. Springer, Singapore Pte Ltd. 2017, pp. 17-34.

Hossain M.A., Bhattacharjee S., Armin S -M., Qian P., Xin W., Li, H.-Y., et al. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging.  Front. Plant Sci. 6:420.

Huan, C.; Jiang, L.; An, X.; Yu, M.; Xu, Y.; Ma, R.; Yu, Z. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Biochem. 2016, 104, 294–303.

Hurr, B.M.; Huber, D.J.; Vallejos, C.E.; Lee, E.; Sargent, S.A. Ethylene-induced overproduction of reactive oxygen species is responsible for the development of water soaking in immature cucumber fruit. J. Plant Physiol. 2013, 170, 56–62.

Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D. (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology 138, 790–802.

Khokon MDAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443.

Kumar, V.; Irfan, M.; Ghosh, S.; Chakraborty, N.; Chakraborty, S.; Datta, A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 2016, 253, 581–594.

Liu, Y., Ye, N., Liu, R., Chen, M., Zhang, J., 2010. H(2)O(2) mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61 (11), 2979–2990.

Lozano R.M., Wong J.H., Yee B.C., Peters A., Kobrehel K. & Buchanan B.B. (1996) New evidence for a role of thioredoxin h in germination and seedling development. Planta 200, 100–106.

Mangano, S.; Denita-Juarez, S.P.; Choi, H.-S.; Marzol, E.; Hwang, Y.; Ranocha, P.; Velasquez, S.M.; Borassi, C.; Barberini, M.L.; Aptekmann, A.A.; et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA 2017, 114, 5289–5294.

Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

Sandalio, L.M.; Rodríguez-Serrano, M.; Romero-Puertas, M.C. Leaf epinasty and auxin: A biochemical and molecular overview. Plant Sci. 2016, 253, 187–193.

Saxena, I.; Srikanth, S.; Chen, Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Front. Plant Sci. 2016, 7, 570.

Serrano, I.; Romero-Puertas, M.C.; Sandalio, L.M.; Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 2015, 66, 2869–2876.

Su, C.; Liu, L.; Liu, H.; Ferguson, B.J.; Zou, Y.; Zhao, Y.; Wang, T.; Wang, Y.; Li, X. H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J. Plant Biol. 2016, 59, 260–270.

Winterbourn, C.C. Biological Production, Detection and Fate of Hydrogen Peroxide. Antioxid. Redox Signal. 2017, 29, 541–551


Deja un comentario

Environmentally friendly strategies against Plum pox virus: Effect of PPV infection on the salicylic acid biosynthetic pathway from mandelonitrile in peach

José A. Hernándeza; Pedro Díaz-Vivancosa,b
aBiotechnology of Fruit Trees Group, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, 25. 30100 Murcia (Spain). bDepartment of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain.

In a previous work, we reported that the cyanogenic glycosides (CNglcs) pathway can be involved in a new salicylic acid (SA) biosynthetic pathway in peach, with mandelonitrile (MD) linking both pathways (Diaz-Vivancos et al. 2017). In this pathway, MD acts as an intermediary molecule between CNglcs turnover and SA biosynthesis (Diaz-Vivancos et al. 2017). The plant hormone SA plays multiple roles in plants and acts as an endogenous signal mediating plant defense responses against both biotic and abiotic stimuli. In that regards, we study the effect of MD and phenylalanine (Phe), a known SA-precursor, treatments on stress-related plant hormone contents [(SA, abscisic acid (ABA), and jasmonic acid (JA)] and symptomatology in Plum pox virus-infected peach seedlings.

            The PPV-infected peach seedlings were treated with 1 mM MD or Phe for six weeks and then submitted to an artificial rest period again, which was necessary to ensure the later multiplication of the virus. Samples were taken six weeks after the second artificial rest period; the seedlings were inspected for sharka symptoms and were irrigated with either 1 mM MD or Phe during these six weeks. For all the conditions, 12 seedlings were assayed, and another 12 plants were kept as control.

            In PPV-infected seedlings, an increase of about 1.5-fold in total SA content was observed in control and MD- and Phe-treated plants due to the infection (Fig.1), suggesting that the SA biosynthetic pathway from MD is also functional under biotic (Plum pox virus infection) stress conditions, although the contribution of this pathway to the total SA pool does not seem to be important under such condition. We also analyzed the effect of MD and Phe treatments on abcisic (ABA) and jasmonic acids (JA) levels in control and PPV-infected seedlings. The MD treatment produced a drop in ABA levels in control plants. However, PPV-infection induced an increase in ABA content in MD-treated plants, whereas JA levels strongly increased by both MD and Phe treatments (Fig 1).

Fig 1 color

Figure 1.- Total ABA , JA and SA levels in the leaves of peach seedlings grown in the presence or absence of MD or Phe submitted PPV infection . Data represent the mean ± SE of at least five repetitions of each treatment. Different letters indicate significant differences according to Duncan’s test (P≤0.05).

            Regarding PPV symptoms, venal chlorosis and leaf deformation were observed in non-treated seedlings. The mean intensity of PPV symptoms observed in non-treated plants, around 3.0 on a scale of 0 to 5, confirmed the high susceptibility described for this cultivar. Both MD and Phe treatments reduced the severity of symptoms, although Phe in a lesser extent than MD (Fig 2). This response correlated with higher levels of SA and JA in peach leaves, as well as with enhanced ABA levels in MD-treated seedlings.

 

Fig 2 color

Fig. 2.- Phenotypic scoring for evaluating sharka symptoms in peach seedlings. Data represent the mean ± SE of at least 10 repetitions. Different letters indicate significant differences according to Duncan’s test (P≤0.05).

            As a conclusion, based on our previous results suggesting that the CNgls pathway can be involved in SA biosynthesis via MD, we have found evidences that this new SA biosynthetic pathway also works also under stress conditions. These data suggest that SA biosynthesis from MD could have a positive effect in the response of peach plants to PPV infection, reducing Sharka symptomatology, even though that the contribution of this pathway to the total SA pool does not seem to be relevant.

For more information, please see: Euphresco_success_story_Epi-PPV_2

Project ID: 2015-E-147 Determine different Plum pox virus strains in wild hosts and in stone fruit cultivars with different susceptibility as a part of improved control and surveillance strategies


Deja un comentario

LA EVOLUCIÓN DEL METABOLISMO DE LAS ESPECIES REACTIVAS DEL OXÍGENO (Parte II)

Red de Regulación Génica por ROS

Un trabajo reciente revisa la aparición de la red de regulación génica por especies reactivas del oxígeno (ROS) en organismos. Según los autores (Inupakulika et al 2016), esta red se originó hace unos 3500-4100 millones de años, previo al gran evento de oxidación que tuvo lugar tras la aparición de las cianobacterias en el planeta Tierra.

La red de regulación génica por ROS incluye a todos aquellos genes que codifican proteínas que detoxifican ROS como a proteínas que producen ROS. En Arabidopsis esta red génica parece estar compuesta por 150 genes, e incluye (Mittler et al 2004):

  • Genes que codifican Fe-, Mn-, y Cu,Zn-SODs [secuestradores de radicales superóxido (O2.-)].
  • Ascorbato peroxidasas (APXs), Catalasas (CATs), glutatión peroxidasas (GPXs), peroxirredoxinas (PRXR) y otras peroxidasas, que secuestran H2O2.
  • Monodeshidroascorbato reductasa (MDHAR), Deshidroascorbato reductasa (DHAR) y Glutatión Reductasa (GR), que participan en el reciclaje de las formas reducidas del ascorbato (ASC) y del glutatión (GSH), usados en la eliminación de O2.- y H2O2.
  • Tiorredoxinas y glutarredoxinas, que participan en reacciones redox
  • NADPH oxidasas, incluyendo las RBOHs (Respiratory burst oxidase homologs). Se han descrito 10 RBOHs en Arabidopsis
  • Diferentes enzimas que generan ROS: xantina oxidasas, glicolato oxidasas, oxalato oxidasas.
  • Proteínas relacionadas con la síntesis de moléculas antioxidantes (ASC, GSH, α-tocoferol, carotenoides, flavonoides y otros compuestos fenólicos.
  • Proteínas y enzimas que controlan los niveles de Fe en las células (el Fe2+ puede reaccionar con H2O2 para formas radicales hidroxilo (.OH) (reacción de Fenton). Proteínas tales como la ferritina, sistemas de absorción de Fe, proteínas Fe-S son importantes para evitar que exista Fe libre, por lo que son muy importantes para proteger frente a la formación de ROS.
  • Proteínas y factores de transcripción implicados en el metabolismo de ROS.

Es posible que el número de genes de la red de regulación génica por ROS pueda exceder de 250-300 si se tiene en cuenta también genes de regulación, biosíntesis, reparación degradación, absorción y genes reparadores (Mittler et al 2004).

Fig 4 ciclo ASC-GSH

 Ciclo Ascorbato-Glutatión (ASC-GSH) presente en diferentes compartimentos celulares en células vegetales.

sod

Reacción enzimáticas de las SODs

 

Bibliografía

Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, and Mittler R (2016) The evolution of reactive oxygen species metabolism. J.  Exp. Bot. 21, 5933–5943.

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9, 490–498.


Deja un comentario

LA EVOLUCIÓN DEL METABOLISMO DE LAS ESPECIES REACTIVAS DEL OXÍGENO (Parte I)

(José A. Hernández Cortés, Grupo de Biotecnología de Frutales, CEBAS-CSIC)

Las especies reactivas del oxígeno (ROS; O2.-, H2O2, .OH, 1O2) son formas parcialmente reducidas o excitadas del oxígeno atmosférico que pueden reaccionar con diferentes componentes celulares, incluyendo macromoléculas esenciales, como proteínas, lípidos o el ADN. En plantas, los principales compartimentos generadores de ROS son (Corpas 2015; Mignolet-Spruyt et al 2016):

  • los cloroplastos, que principalmente produce O2.-, H2O2, .y 1O2 como subproductos de la fotosíntesis;
  • las mitocondrias, que principalmente produce O2.- y H2O2, como subproductos de la respiración;
  • los peroxisomas, que principalmente producen H2O2 como subproducto de la fotorrespiración y de la β-oxidación de ácidos grasos, y O2.- como subproducto del metabolismo de las purinas;
  • y el apoplasto, que produce O2.- y H2O2 como moléculas señalizadoras por la acción de las NADPH oxidasas (denominadas también RBOH, respiratory burst oxidase homolog), peroxidasas y supexóxido dismutada (SOD).

 

Principales productores de ROS

Principales compartimentos generadores de ROS en las células vegetales. Modificado a partir de Hernández et al 2016

 

Aunque las ROS son consideradas como subproductos tóxicos del metabolismo aerobio que deben ser eliminados para prevenir daños celulares, estudios recientes han demostrado que las ROS son empleadas como moléculas señalizadoras, y que incluso es necesario un nivel basal de ROS para sustentar la vida (Mittler 2016). En este sentido, los niveles de ROS han de mantenerse por debajo de un nivel citotóxico, de modo que le permita funcionar de forma segura como moléculas traductoras de señales que puedan mediar diferentes procesos en las células, incluyendo la regulación de rutas metabólicas, procesos fisiológicos tales como el control del cierre estomático, activación de respuestas de aclimatación a estreses abióticos, o de respuesta frente a patógenos, activación de programas de desarrollo y la coordinación de respuestas sistémicas frente a estimulas ambientales (Revisado en Inupakutika et al 2016).

Debido a que las ROS pueden afectar el estado de oxidación de muchas proteínas (oxidando residuos de Cys o de Met), pueden alterar su función y afectar la actividad de varias cascadas de fosforilación, así como a factores de transcripción y de otras proteínas reguladoras. Este proceso se denomina ‘biología redox’ actuando como un sistema de comunicación entre ROS y los diferentes procesos biológicos que controlan.

La producción de ROS está muy unida a cambios en los niveles celulares de Ca2+, a la función de diferentes receptores, hormonas vegetales, eventos de fosforilación etc…Todo ello lleva a pensar que la vida en la tierra probablemente evolucionó en presencia de las ROS (Mittler 2016¸ Inupakutika et al 2016). Por lo tanto, es muy probable que ROS aparecieran en la Tierra junto con las primeras moléculas de oxígeno atmosférico hace unos 2.400 a 3.800 millones de años, siendo un compañero constante de la vida aeróbica desde entonces (Mittler 2016).

 

Bibliografía

Corpas FJ (2015) What is the role of hydrogen peroxide in plant peroxisomes? Plant Biology 17 1099–1103.

Hernández et al (2016) Oxidative stress and antioxidative responses in plant-virus interactions. Physiol Mol Plant Pathol 64, 134-148.

Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, and Mittler R (2016) The evolution of reactive oxygen species metabolism. J.  Exp. Bot. 21, 5933–5943.

Mignolet-Spruyt et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signaling. J. Exp. Bot. 67, 3831–3844.

Mittler R (2016) ROS Are Good. Trends in Plant Science, January 2017, Vol. 22, 11-19.