antioxidantsgroup

Plant ROS Research


Deja un comentario

¿Se puede considerar el agua oxigenada (H2O2) como una hormona vegetal?

En 1937, Frits Went y Kenneth Thimann, en su libro “Phytohormones” definieron hormona como una sustancia que siendo producida en una parte del organismo, es transferida a otra parte donde produce un efecto fisiológico específico, caracterizándose por la propiedad de servir como mensajeros químicos.

Algunos científicos indicaron que las diferencias entre la acción de una hormona en animales y en plantas es muy grande para usar el mismo término. Las hormonas animales se producen en tejidos específicos (por ejemplo en la glándula pituitaria, en el páncreas etc…), son transportadas por el torrente sanguíneo y actúan en tejidos distantes. Sin embargo, la mayoría de las células vegetales son capaces de producir hormonas, sus mecanismos de transporte son diversos y pueden afectar a cortas y a largas distancias, es decir, en el mismo lugar de producción o en células más distantes. Las hormonas animales son transportadas por la sangre, mientras que las fitohormonas se transportan vía xilema y/o floema.

También existen similitudes en la función de las hormonas en animales y en vegetales: son activas a bajas concentraciones y funcionan como señales químicas, por lo que el término de hormona también se acepta para describir a este tipo de moléculas en plantas. Sin embargo, y para evitar confusiones con animales, se introdujo el término de fitohormona para referirnos a estas sustancias en plantas.

El H2O2 es uno de los metabolitos redox más importante

 A altas concentraciones induce daños oxidativos a macromoléculas biológicas que puede dar lugar a muerte celular. Sin embargo, a bajas concentraciones, el H2O2 puede actuar como una molécula señalizadora y en muchos aspectos se asemeja a una fitohormona.

A diferencia de otras especies reactivas del oxígeno (ROS), el H2O2 es una molécula relativamente estable, con una vida media de milisegundos (ms). Su concentración en tejidos vegetales oscila aproximadamente sobre 1 µmol por gramo de peso fresco en condiciones normales (Cheeseman et al 2006).

En las células vegetales, el H2O2 se produce por diferentes rutas (Fig 1):

Fotorrespiración

Cadenas de transporte electrónico

Reacciones redox

                La mayoría de H2O2 intracelular se produce a partir del Os, en una reacción escalonada en la que el radical superóxido (O2.-) es el intermediario. En situaciones de estrés ambiental, el cloroplasto y la mitocondria generan una elevada producción de O2.-. Este anión es dismutado hasta H2O2 tanto de forma no enzimática, en una reacción dependiente del pH, como de forma enzimática por acción de las superóxido dismutasas (SODs).

En el apoplasto, las NADPH oxidasas y las POXs de clase III de pared celular son también responsables de la formación de H2O2. Las NADPH oxidasas generan O2.- empleando el poder reductor del NADPH citosólico. Posteriormente, el O2.- generado dismuta a H2O2 por acción enzimática de la SOD. La degradación de aminas y poliaminas, por acción de amino oxidasas dependientes de Cu y de poliamina oxidasa, es también fuente de H2O2 en plantas.

                Sin embargo, el principal sitio de generación de H2O2 en las células vegetales es el peroxisoma. Este orgánulo contiene diferentes enzimas que generan H2O2: SOD, amino oxidasa, acil-CoA oxidasa, glicolato oxidasa, uricasa, sulfato oxidasa, aldehído oxidasa, sarcosina oxidasa y xantina oxidasa.

                La β-oxidación de ácidos grasos, vía acil-CoA, genera H2O2.  Este es un proceso importante durante la germinación de semillas que contienen glioxisomas. En tejidos fotosintéticos, la producción de H2O2 en el peroxisoma tiene lugar durante la fotorrespiración (ver https://bit.ly/2ycmlSf), contribuyendo aproximadamente al 70% de la producción total del H2O2 de la célula vegetal.

Esquema 1

Fig. 1. Fuentes de generación de peróxido de hidrógeno

 

Enzimas eliminadoras de H2O2

EL contenido endógeno de H2O2 en células vegetales es mayor que el de células animales o en bacterias. LA acumulación descontrolada de H2O2 puede dar lugar a la generación de radicales hidroxilo mediante una reacción de Fenton (ver https://bit.ly/2PbLRy8). Por ello, es necesario un sistema eficiente  para la eliminación de H2O2 (y de O2.-). En este sentido, las plantas disponen de un eficiente arsenal de defensa frente a las ROS, incluido el H2O2. Las defensas enzimáticas incluyen catalasas, peroxidasas (POXs), ascorbato peroxidasas (APXs), glutatión peroxidasas (GPXs) (ver https://bit.ly/2y04tut). Igualmente, diferentes compuestos no enzimáticos (antioxidantes no enzimáticos) tienen una gran importancia en la eliminación de H2O2 (ver https://bit.ly/2O5DLur).

Transporte

No existe ninguna evidencia del transporte del H2O2 a largas distancias. Sin embargo, al ser la ROS menos reactiva, esta propiedad le permite viajar a las células vecinas o a otros compartimentos celulares y poder así actuar como molécula señalizadora (Winterbourn 2017). En este sentido, si el H2O2 es capaz de escapar de los mecanismos de eliminación (antioxidantes) y si no es reducido a .OH, podría difundir más libremente desde el sitio de generación y alcanzar su posible blanco.

Peroxiporinas: En el año 2000, los investigadores Henzler y Steudle describieron la existencia de una subclase de acuaporina que llamaron peroxiporina implicada en el transporte de H2O2. LAS acuaporinas vegetales son una clase de proteínas transportadoras de agua y de otras moléculas, incluyendo CO2 y nutrientes, cumpliendo una función en el crecimiento y desarrollo vegetal.

Señalización

Está muy demostrado que el efecto del H2O2 depende de su dosis y que a concentraciones bajas actúa como molécula señalizadora. A pesar de que el H2O2 es rápidamente eliminado,  de forma enzimática, dichos mecanismos enzimáticos son menos efectivos a concentraciones muy bajas, del orden de 10 nM, lo que  permite al H2O2 actuar como segundo mensajero (Winterbourn 2017). Las proteínas son un objetivo primario de las ROS y hay dos modos de acción mediante los cuales el H2O2 es percibido: La oxidación de residuos de aminoácidos y la reacción con un intermedio reactivo.

La oxidación directa de residuos cisteinil y de cadenas laterales tiólicas puede actuar como sensor y/o interruptor en la traducción de señales y en la regulación de la actividad enzimática (Cerny et al 2018). Los residuos de cisteína pueden sufrir modificaciones reversibles o irreversibles. Enzimas clave del Ciclo de Calvin y del metabolismo del carbohidratos son oxidados en respuesta a H2O2 (Rubisco, ribulosa-5-fosfato-quinasa, gliceraldehido-3-fosfato deshidrogenasa, transcetolasa, sedoheptulosa-1,7-bifosfatasa…).

La oxidación de residuos de metionina no parece estar relacionada con la señalización del H2O2 pero su primera forma oxidasa, la metionina sulfóxido, es el producto de una modificación postraducional, que puede ser revertida por acción de la metionina sulfóxido reductasa (Cerny et al 2018). Esta enzima aumenta la tolerancia a H2O2, lo que indica que los residuos de metionina podrán tener una función en la respuesta a estrés inducida por H2O2. También se ha demostrado que la actividad GSH-S-transferasa se reduce por la oxidación de metionina (Hardin et al 2009).

Sin embargo, las modificaciones postraduccionales de proteínas inducido por H2O2 no se limita a residuos de cisteína y metionina

Factores de transcripción (FT)

El H2O2 puede interaccionar con diferentes FT favoreciendo tanto su activación como su inactivación. Los factores de HsfA (Heat-Shock Transcription Factors) tienen que formar trímeros para activar genes inducibles por choques térmicos, como la APX. Este mecanismo de trimerización requiere la formación de puentes di-sulfuro intramoleculares que podría estar directamente inducido por el H2O2.

La familia de FT NAC está implicada en procesos de desarrollo y en diferentes procesos biológicos, incluyendo senescencia y respuestas a estrés abiótico.  Muchos genes de esta familia son inducidos por H2O2.

El inhibidor de la ARN polimerasa citosólica se activa por H2O2 a través del sistema tiorredoxina y se transloca al núcleo.

Los FT WRKY30, WRKY53 y WRKY46 se inducen en respuesta a O3 y H2O2. El FT WRKY70 interactúa en la respuesta del FT ZAT7 (una proteína de dedo de Zinc) con el H2O2. El FT ZAT12, que también responde a H2O2, media en la absorción de Fe en respuesta a deficiencias de dicho nutriente (ver en Cerny et al 2018).

El Ca2+ es un segundo mensajero implicado en numerosos procesos en plantas. Muchas respuestas requieren un efecto combinado del H2O2 y el Ca2+. Por ejemplo, la apertura de canales de H2O2 dependientes de Ca. La proteína Calmodulian dependiente de Ca activa la enzima catalasa (eliminadora de H2O2) y una fosforilación dependiente de Ca activa las NADPH oxidasas (que genera O2.- que posteriomente dismuta a H2O2).

Interacción H2O2/Fitohormonas

Diferentes autores han mostrado la existencia de una interacción entre el estado redox celular y las hormonas vegetales. Las ROS, además de mediar rutas relacionadas con estrés, son componentes clave de las redes de señalización de las fitohormonas. En respuesta a diferentes hormonas (ABA, auxinas, brasinoesteriodes, citoquininas, SA , JA, etc…) se ha detectado cambios en los niveles de proteínas relacionadas con el metabolismo del H2O2 y con el estado redox en general. En este sentido se ha descrito cambios en catalasa, SOD, APX, POXs, peroxirredosinas, etc… (revisado en Cerny et al 2018).

Algunas enzimas implicadas en el metabolismo de hormonas generan H2O2, como ocurre con la ABA aldehído oxidasa, auxina aldehído oxidasa, monooxigenasas etc…

Del mismo modo, se ha descrito como el H2O2 actúa sobre el metabolismo de algunas hormonas como el ABA. En este sentido, tratamientos de semillas de guisante con H2O2 reducen los niveles de ABA (Barba-Espín et al 2010). Este efecto está mediado con el aumento de los niveles de expresión del gen CYP707A2, que codifica para la enzima ABA 8′-hidroxilasa, implicada en el catabolismo de ABA (Liu et al., 2010). Sin embargo, la inducción de genes relacionados con el catabolismo del ABA por H2O2 requiere también la participación del NO (Liu et al 2010). Además, estos mismos autores han descrito la mediación del H2O2 en la regulación de genes implicados en la biosíntesis de las GAs (GA 20-oxidasa, GA 3-oxidasa y  GA 2-oxidasa).

La señalización por etileno se induce en respuesta a la acumulación de H2O2 y el receptor del etileno ETR1 puede percibir el H2O2 directamente de una manera independiente de etileno (Desikan et al 2005).

Señalización de la luz

La percepción de la luz azul por criptocromo está acoplada a la producción de H2O2, mientras que el fitocromo B también modula el metabolismo de ROS en raíces vía síntesis y transporte del ABA (Consentino et al 2015 ; Ha et al. 2018).

Germinación

Durante la germinación de semillas la activación del metabolismo aumenta los niveles de producción de ROS, incluyendo el H2O2. La germinación comienza con la absorción de agua por parte de la semilla seca, y termina con la elongación del eje embrionario y la protrusión de la radícula. Durante este proceso, se activa la respiración que proporciona energía, se degradan proteínas de reserva para proporcionar energía y aportar aminoácidos para las nuevas proteínas que se sinteticen, etc…Hay que pensar, que la semilla, en cuanto empiece a tomar agua va a activar su metabolismo en mitocondrias, peroxisomas, glioxisomas, y por tanto empezará a producir ROS. Además, la activación de la NADPH oxidasa también genera O2.- (y por tanto H2O2).

Trabajando sobre el efecto del H2O2 sobre la germinación de semillas de guisante, Barba-Espín et al (2011) propusieron  un modelo, según el cual el H2O2 podría inducir un descenso de ABA en la semilla dependiente de MAPK e inducir la carbonilación de proteínas de reserva, favoreciendo su movilización, y de enzimas glucolíticas, lo que estimularía el ciclo de las pentosas fosfato (Job et al. 2005). La activación de dicho ciclo proporcionaría NADPH para el sistema tiorredoxina, implicado en la germinación y en el desarrollo de plántulas (Lozano et al. 1996). Alternativamente, el H2O2 podría actuar, directa o indirectamente en el embrión alterando el transporte de ABA y/o induciendo un catabolismo de esta hormona, lo que favorecería la germinación. Finalmente, el descenso de ABA podría inducir un descenso en ACC, lo que favorecería la emergencia de la radícula a las 24 h de tratamiento con H2O2  (Fig 2) (Barba-Espín et al., 2011).

esquema modelo H2O2 guisante

Fig 2. Modelo propuesto por Barba-Espín et al (2011) sobre la función clave del H2O2 en la germinación y crecimiento temprano en guisante.

Por ello, un control de los niveles de ROS, por parte de los mecanismos de defensa antioxidantes, va a resultar de gran importancia durante el proceso de germinación (ver https://bit.ly/2QvH1fw).

Desarrollo de raíces

Las auxinas son las hormonas clave en la regulación del crecimiento de la raíz y es conocido que las auxinas median cambios en los niveles de H2O2, promoviendo el crecimiento celular y la formación de raíces laterales (Su et al 2016).

Desarrollo de tallos

El crecimiento y desarrollo de tallos está dirigido por las hormonas auxinas y citoquininas. Las auxinas inducen las POXs de pared celular y la NADPH oxidasa para generar ROS, favorecer el debilitamiento de la pared celular y favorecer la elongación celular (Mangano et al 2017). A su vex, se ha descrito que el H2O2 puede mediar en la dominancia apical y la epinastia foliar (Sandalio et al 2016).

Movimiento de estomas

 El mecanismo de cierre estomático mejor descrito es el mediado por ABA, que actúa en conexión de otras señales como los iones Ca2+, NO, H2O2 y procesos de fosforilación (https://bit.ly/2O7TXeQ). Las células guarda pueden generar H2O2 por diversas vías, incluyendo las actividades enzimáticas amino oxidasa, POXs y NADPH oxidasa. A su vez, esta última proteína está regulada por iones Ca2+ y por procesos de fosforilación mediados por la proteína quinasa OST1. A su vez, la proteína OST1 está regulada por ABA.

El SA SA reduce la conductancia estomática en una forma dependiente de la dosis. Este efecto parece ser dependiente de la generación de ROS ya que la aplicación de enzimas antioxidantes (Catalasa, SOD) suprime este efecto. El cierre estomático inducido por SA era prevenido por tratamientos con salicilhidroxámico, un inhibidor de POXs de pared celular, pero no por DPI (inhibidor de  NADPH oxidasa). Esto sugiere que el cierre de estomas inducido por SA está mediado con la producción de H2O2 debido a las POXs de pared celular (Khokon et al 2011; Miura et al 2013). En este proceso también interviene los iones Ca2+, ya que el tratamiento con un quelante de Ca2+ (EGTA) reduce el efecto del SA en el cierre de estomas (Khokon et al 2011).

Por lo tanto, se puede sugerir que la aplicación de SA podría tener una aplicación práctica en Agricultura con el fin de aumentar la tolerancia de las plantas a condiciones de falta de agua (Hernández et al 2017).

Polinización

El H2O2 y otras ROS tienen una función clave en la navegación de polen y la fusión de gametofitos. Las plantas angiospermas (las que producen verdaderas flores) han desarrollado barreras reproductivas para evitar la autofecundación, conocido como autoincompatibilidad (Serrano et al 2015). Los niveles de H2O2 son elevados durante una reacción incompatible, pudiendo ocasional una muerte celular programada. Sin embargo, en una reacción compatible, los niveles de H2O2 disminuyen en el estigma favoreciendo el desarrollo del tubo polínico. La acumulación de ROS, especialmente la del radical hidroxilo que se genera en gran parte a partir de H2O2, es crucial para la ruptura del tubo polínico y la liberación de células espermáticas (Duan et al 2014).

Maduración de frutos

Huan et al. (2016) propusieron que el H2O2 actúa como una molécula de señalización en la etapa intermedia del desarrollo de frutos de melocotón, actuando como una molécula tóxica importante, ya que estimula el proceso de peroxidación de lípidos y un estrés oxidativo, durante la etapa tardía de la maduración del fruto (Huan et al 2016). Otros autores han observado cambios en el estado redox durante diferentes etapas de la maduración de frutos de tomate encontrando un aumento importante en los contenidos de H2O2 en el denominado punto de ruptura (definido como el cambio de color en el fruto) (Kumar et al 2016). El aumento de H2O2 parece estar regulado por etileno, que se correlaciona con un aumento de la tasa respiratoria y de la producción de ROS (Hurr et al 2013).

Senescencia y Muerte celular

La senescencia es un proceso oxidativo regulado genéticamente que implica una degradación general de las estructuras celulares y las enzimas y la movilización de los productos de degradación a otras partes de la planta. La senescencia se caracteriza principalmente por el cese de la fotosíntesis, la desintegración de las estructuras de los orgánulos, las pérdidas intensivas de clorofila y proteínas y los aumentos dramáticos en la peroxidación lipídica y de la permeabilidad de la membrana. Estos últimos cambios se deben principalmente a un aumento  en la generación de ROS que tiene lugar en los tejidos vegetales durante el proceso de senescencia (del Río et al 1998). En dichos tejidos, el H2O2 puede mediar procesos de muerte celular programada junto con cambios en hormonas relacionadas con estrés como SA o etileno (Cerny et al 2018). Se ha observado que líneas de plantas transgénicas que presentan bajos niveles de H2O2 tienen una senescencia retardada (Bieker et al 2012). Plantas de tabaco, que sobreexpresan los transgenes cytsod y/o cytapx (codifican para SOD o APX citosólicas) además de ser más tolerantes al estrés hídrico, presentaron una senescencia retardada (ver figura 3). Estas plantas, además de presentar más actividad SOD y/o APX también mostraron niveles mayores de otras actividades antioxidantes, como catalasa, POX, etc…) (Faize et al 2011).

Planats tabaco transgenicas

Figura 3.- Plantas transformadas de tabaco que sobreexpresan genes antioxidantes. Se puede mostrar como las plantas transformadas tienen una clorosis retardada, a diferencia de los controles, donde las hojas basales ya están totalmente cloróticas.

Respuesta a estreses ambientales

Las hormonas relacionadas con respuesta a estrés (ABA, SA, JA y etileno) emplean H2O2 en sus cascadas de señalización (Saxena et al 2016). Igualmente, el H2O2 está implicado en respuestas de aclimatación y tolerancia a diferentes estreses. En este sentido, el pre-tratamiento de plantas o semillas con H2O2 aumenta la resistencia a diferentes estreses, incluyendo salinidad, estrés hídrico, estrés térmico, etc… (Hossain et al 2015).

CONCLUSIONES

El H2O2 es una molécula señalizadora y está conectada con la ruta de señalización de diferentes fitohormonas, actuando como segundo mensajero en respuesta a diferentes condiciones ambientales y modulando el crecimiento y el desarrollo vegetal.

Su efecto en el crecimiento depende de la dosis, lo que nos lleva a pensar en el H2O2 como un regulador del crecimiento, pero ¿podríamos decir que el H2O2 es una posible hormona?

El H2O2 es producido y degradado por la misma planta en respuesta a estímulos y puede ser percibido por proteínas especializadas, elicitando respuestas a bajas concentraciones (del orden de nM).

Sin embargo, el factor limitante del H2O2 para poder considerarlo como posible hormona reside en su transporte, ya que no puede moverse a largas distancias debido a su baja estabilidad y a la presencia de diferentes moléculas eliminadoras o secuestradoras (antioxidantes enzimáticos y no enzimáticos) de H2O2.

Sin embargo, el que se considere o no al H2O2 como una fitohormona no cambia para nada su importancia en el ciclo de vida de las plantas.

Bibliografía

Barba-Espin, G., Diaz-Vivancos, P., Clemente-Moreno, M.J., Albacete, A., Faize, L., Faize, M., Perez-Alfocea, F., Hernandez, J.A., 2010. Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33 (6), 981–994.

Barba-Espin, G., Diaz-Vivancos, P., Job, D., Belghazi, M., Job, C., Antonio Hernandez, J., 2011. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ. 34 (11), 1907–1919.

Bieker, S.; Riester, L.; Stahl, M.; Franzaring, J.; Zentgraf, U. Senescence-specific Alteration of Hydrogen Peroxide Levels in Arabidopsis thaliana and Oilseed Rape Spring Variety Brassica napus L. cv. MozartF. J. Integr. Plant Biol. 2012, 54, 540–554.

Cerný M, Hana Habánová  Miroslav Berka, Markéta Luklová,Bretislav Brzobohatý (2018) Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812; doi:10.3390/ijms19092812

Cheeseman, J.M. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 2006, 57, 2435–2444.

Consentino, L.; Lambert, S.; Martino, C.; Jourdan, N.; Bouchet, P.-E.;Witczak, J.; Castello, P.; El-Esawi, M.; Corbineau, F.; d’Harlingue, A.; et al. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol. 2015, 206,1450–1462.

del Rio LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, López-Huertas E, Hernández JA (1998) The activated oxygen role of peroxisomes senescence. Plant Physiol 116:1195–1200

Desikan, R.; Hancock, J.T.; Bright, J.; Harrison, J.; Weir, I.; Hooley, R.; Neill, S.J. A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol. 2005, 137, 831–834.

Duan, Q.; Kita, D.; Johnson, E.A.; Aggarwal, M.; Gates, L.; Wu, H.-M.; Cheung, A.Y. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 2014, 5, 3129.

Faize M, Burgos L, Faize L, Piqueras A, Nicolas, E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62: 2599-2613.

Ha, J.-H.; Kim, J.-H.; Kim, S.-G.; Sim, H.-J.; Lee, G.; Halitschke, R.; Baldwin, I.T.; Kim, J.-I.; Park, C.-M. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis. Plant J. 2018, 94, 790–798.

Hardin, S.C.; Larue, C.T.; Oh, M.-H.; Jain, V.; Huber, S.C. Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J. 2009, 422, 305–312.

Henzler, T.; Steudle, E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 2000, 51, 2053–2066.

Hernández JA; Díaz-Vivancos P; Barba-Espín G, Clemente-Moreno MJ (2017) On the role of salicylic acid in plant responses to environmental stresses. In: Nazar R., Iqbal N., Khan N. (eds), Salicylic Acid: A Multifaceted Hormone. Springer, Singapore Pte Ltd. 2017, pp. 17-34.

Hossain M.A., Bhattacharjee S., Armin S -M., Qian P., Xin W., Li, H.-Y., et al. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging.  Front. Plant Sci. 6:420.

Huan, C.; Jiang, L.; An, X.; Yu, M.; Xu, Y.; Ma, R.; Yu, Z. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Biochem. 2016, 104, 294–303.

Hurr, B.M.; Huber, D.J.; Vallejos, C.E.; Lee, E.; Sargent, S.A. Ethylene-induced overproduction of reactive oxygen species is responsible for the development of water soaking in immature cucumber fruit. J. Plant Physiol. 2013, 170, 56–62.

Job C., Rajjou L., Lovigny Y., Belghazi M. & Job D. (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiology 138, 790–802.

Khokon MDAR, Okuma E, Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ 34:434–443.

Kumar, V.; Irfan, M.; Ghosh, S.; Chakraborty, N.; Chakraborty, S.; Datta, A. Fruit ripening mutants reveal cell metabolism and redox state during ripening. Protoplasma 2016, 253, 581–594.

Liu, Y., Ye, N., Liu, R., Chen, M., Zhang, J., 2010. H(2)O(2) mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61 (11), 2979–2990.

Lozano R.M., Wong J.H., Yee B.C., Peters A., Kobrehel K. & Buchanan B.B. (1996) New evidence for a role of thioredoxin h in germination and seedling development. Planta 200, 100–106.

Mangano, S.; Denita-Juarez, S.P.; Choi, H.-S.; Marzol, E.; Hwang, Y.; Ranocha, P.; Velasquez, S.M.; Borassi, C.; Barberini, M.L.; Aptekmann, A.A.; et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA 2017, 114, 5289–5294.

Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

Sandalio, L.M.; Rodríguez-Serrano, M.; Romero-Puertas, M.C. Leaf epinasty and auxin: A biochemical and molecular overview. Plant Sci. 2016, 253, 187–193.

Saxena, I.; Srikanth, S.; Chen, Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. Front. Plant Sci. 2016, 7, 570.

Serrano, I.; Romero-Puertas, M.C.; Sandalio, L.M.; Olmedilla, A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot. 2015, 66, 2869–2876.

Su, C.; Liu, L.; Liu, H.; Ferguson, B.J.; Zou, Y.; Zhao, Y.; Wang, T.; Wang, Y.; Li, X. H2O2 regulates root system architecture by modulating the polar transport and redistribution of auxin. J. Plant Biol. 2016, 59, 260–270.

Winterbourn, C.C. Biological Production, Detection and Fate of Hydrogen Peroxide. Antioxid. Redox Signal. 2017, 29, 541–551

Anuncios


Deja un comentario

LA EVOLUCIÓN DEL METABOLISMO DE LAS ESPECIES REACTIVAS DEL OXÍGENO (Parte I)

(José A. Hernández Cortés, Grupo de Biotecnología de Frutales, CEBAS-CSIC)

Las especies reactivas del oxígeno (ROS; O2.-, H2O2, .OH, 1O2) son formas parcialmente reducidas o excitadas del oxígeno atmosférico que pueden reaccionar con diferentes componentes celulares, incluyendo macromoléculas esenciales, como proteínas, lípidos o el ADN. En plantas, los principales compartimentos generadores de ROS son (Corpas 2015; Mignolet-Spruyt et al 2016):

  • los cloroplastos, que principalmente produce O2.-, H2O2, .y 1O2 como subproductos de la fotosíntesis;
  • las mitocondrias, que principalmente produce O2.- y H2O2, como subproductos de la respiración;
  • los peroxisomas, que principalmente producen H2O2 como subproducto de la fotorrespiración y de la β-oxidación de ácidos grasos, y O2.- como subproducto del metabolismo de las purinas;
  • y el apoplasto, que produce O2.- y H2O2 como moléculas señalizadoras por la acción de las NADPH oxidasas (denominadas también RBOH, respiratory burst oxidase homolog), peroxidasas y supexóxido dismutada (SOD).

 

Principales productores de ROS

Principales compartimentos generadores de ROS en las células vegetales. Modificado a partir de Hernández et al 2016

 

Aunque las ROS son consideradas como subproductos tóxicos del metabolismo aerobio que deben ser eliminados para prevenir daños celulares, estudios recientes han demostrado que las ROS son empleadas como moléculas señalizadoras, y que incluso es necesario un nivel basal de ROS para sustentar la vida (Mittler 2016). En este sentido, los niveles de ROS han de mantenerse por debajo de un nivel citotóxico, de modo que le permita funcionar de forma segura como moléculas traductoras de señales que puedan mediar diferentes procesos en las células, incluyendo la regulación de rutas metabólicas, procesos fisiológicos tales como el control del cierre estomático, activación de respuestas de aclimatación a estreses abióticos, o de respuesta frente a patógenos, activación de programas de desarrollo y la coordinación de respuestas sistémicas frente a estimulas ambientales (Revisado en Inupakutika et al 2016).

Debido a que las ROS pueden afectar el estado de oxidación de muchas proteínas (oxidando residuos de Cys o de Met), pueden alterar su función y afectar la actividad de varias cascadas de fosforilación, así como a factores de transcripción y de otras proteínas reguladoras. Este proceso se denomina ‘biología redox’ actuando como un sistema de comunicación entre ROS y los diferentes procesos biológicos que controlan.

La producción de ROS está muy unida a cambios en los niveles celulares de Ca2+, a la función de diferentes receptores, hormonas vegetales, eventos de fosforilación etc…Todo ello lleva a pensar que la vida en la tierra probablemente evolucionó en presencia de las ROS (Mittler 2016¸ Inupakutika et al 2016). Por lo tanto, es muy probable que ROS aparecieran en la Tierra junto con las primeras moléculas de oxígeno atmosférico hace unos 2.400 a 3.800 millones de años, siendo un compañero constante de la vida aeróbica desde entonces (Mittler 2016).

 

Bibliografía

Corpas FJ (2015) What is the role of hydrogen peroxide in plant peroxisomes? Plant Biology 17 1099–1103.

Hernández et al (2016) Oxidative stress and antioxidative responses in plant-virus interactions. Physiol Mol Plant Pathol 64, 134-148.

Inupakutika MA, Sengupta S, Devireddy AR, Azad RK, and Mittler R (2016) The evolution of reactive oxygen species metabolism. J.  Exp. Bot. 21, 5933–5943.

Mignolet-Spruyt et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signaling. J. Exp. Bot. 67, 3831–3844.

Mittler R (2016) ROS Are Good. Trends in Plant Science, January 2017, Vol. 22, 11-19.


Deja un comentario

ACLIMATACIÓN DE PLANTAS DE STEVIA A CONDICIONES EX-VITRO Y ESTUDIO DE SU RESPUESTA A SALINIDAD

 

El Grupo de Biotecnología de Frutales ha conseguido micropropagar y aclimatar plantas de Stevia rebaudiana y estudiar su respuesta  a salinidad en macetas.

La Stevia es un edulcorante natural no calórico que posee una capacidad endulzante unas 300 veces superior a la sacarosa. La producción a gran escala de Stevia se ve limitada en primer lugar por la baja germinación de sus semillas. En este sentido, en nuestro grupo, hemos desarrollado un protocolo para multiplicar las plantas de Stevia en condiciones in vitro con el fin de obtener plantas clonales.

Enraizamiento de plantas in vitro y aclimatación a condiciones ex-vitro

Estas plantas, adaptadas a condiciones ex vitro (en macetas) se sometieron a estrés salino y comprobamos que desarrollaban mecanismos de adaptación para crecer con salinidades de 2 y 5 g/L.  Entre dichos mecanismos observamos adaptaciones fisiológicas relacionadas con el desarrollo, acumulación de iones y fluorescencia de clorofilas. Por otro lado, también tenían lugar una serie de adaptaciones a nivel bioquímico como cambios en enzimas antioxidantes, contenido de clorofilas y prolina (aminoácido implicado en la tolerancia a estrés salino). Estos cambios les permiten sobrevivir en dichas condiciones de estrés ya que les permiten un ajuste osmótico, una protección de la fotosíntesis y una defensa frente al estrés oxidativo provocado por la salinidad.

Control                         2 g/l                           5 g/l

Efecto de la salinidad en el crecimiento de plantas de stevia y en la fluorescencia de clorofila (de arriba a abajo, qN, qP y NPQ).

En lo que a la producción de esteviósidos, hemos descrito un aumento con la edad de la planta de los contenidos del esteviósido que tiene mejores características comerciales, el Rebaudiósido A, lo que puede tener un interés comercial. Además, observamos que la salinidad no afectaba de una forma significativa la concentración del Rebaudiósido A.

Este trabajo demuestra que es posible usar aguas salinas u otras fuentes alternativas, como aguas de depuradora, para crecer estas plantas así como para la producción de este tipo de edulcorantes naturales.

Stevia La Verdad

Equipo Investigador

 

Para más información

Daniel Cantabella, Abel Piqueras, José Ramón Acosta.Motos, Agustina Bernal-Vicente, José A. Hernández, Pedro Díaz-Vivancos (2017) Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem 115: 484-496. d.o.i.:10.1016/j.plaphy.2017.04.023.


Deja un comentario

ESPECIES REACTIVAS DEL OXÍGENO Y GERMINACIÓN DE SEMILLAS. El acelerador de la vida

José A. Hernández (CEBAS-CSIC, Murcia)

Muchos científicos usan erróneamente el término “Especies Reactivas del Oxígeno” (abreviado ROS) de forma indistinta al término “Radicales Libres”. Cuando hablamos de Radicales Libres no nos referimos a ninguna formación política revolucionaria. Radical Libre hace referencia a cualquier molécula que tenga uno o más electrones desapareados, lo que la hace muy inestable y muy reactiva. No todos los radicales libres son ROS, ni todas las ROS son radicales libres. Por ejemplo, un radical peroxil no es un ROS, mientras que el peróxido de hidrógeno (agua oxigenada, H2O2) es una ROS no radical.

Las ROS se producen de forma natural durante el metabolismo celular en diferentes partes de la célula vegetal. En el caso de las semillas, en las primeras etapas de la germinación, las principales fuentes de generación de ROS son las mitocondrias, los peroxisomas y las membranas celulares. Pensemos que en la mayoría de los casos, las primeras etapas de la germinación van a ocurrir en oscuridad. Por ese motivo, en estas etapas, el cloroplasto no contribuye a la generación de ROS. Sin embargo, en cuanto la plántula que se forme vea la luz, enseguida empezará a formar cloroplastos, y éstos también serán una fuente de ROS.ros

Esquema mostrando los orbitales de unión del oxígeno molecular y de especies reactivas del oxígeno.

La germinación comienza con la absorción de agua por parte de la semilla seca, y termina con la elongación del eje embrionario y la protrusión de la radícula. Durante este proceso, se activa la respiración que proporciona energía, se degradan proteínas de reserva para proporcionar energía y aportar aminoácidos para las nuevas proteínas que se sinteticen, etc…Hay que pensar, que la semilla, en cuanto empiece a tomar agua va a activar su metabolismo, y por tanto empezará a producir ROS. Por ello, un control de los niveles de ROS, por parte de los mecanismos de defensa antioxidantes, va a resultar de gran importancia durante el proceso de germinación.

De acuerdo con el modelo de la ventana oxidativa de Bailly (2008), se requiere un nivel adecuado y óptimo para que la germinación tenga lugar. Por debajo de ese nivel no se produce germinación. Si el nivel de ROS es muy elevado, por ejemplo en semillas que han envejecido por llevar demasiado tiempo almacenadas, o si han estado sometidas a altas temperaturas, se producirán daños al embrión y no germinarán.

fig-ventana-oxidativa

En nuestro laboratorio hemos demostrado que el H2O2 estimula la germinación y el crecimiento temprano en guisante y en melón, orquestando una interacción entre el estado redox celular y las hormonas vegetales durante dicho proceso.

Es importante recordar que en la germinación también es de vital transcendencia el balance giberelinas (GAs)/ácido abcísico (ABA). Las GAs estimulan la germinación, mientras que el ABA la inhibe. Pues bien,  el H2O2 coordina el proceso de germinación de semillas actuando a diferentes niveles:

  • Disminuye el contenido de ABA.
  • Favorece la degradación del ABA en el embrión y/o inhibe su transporte desde los cotiledones al embrión.
  • Aumenta el contenido de GAs
  • Media en la señalización celular vía MAPKs
  • Induce proteínas relacionadas con señalización celular y desarrollo, elongación y división celular.
  • Oxida de forma específica ciertas proteínas. Entre ellas, las mencionadas proteínas de reserva. Este proceso “marca” dichas proteínas para ser degradadas.
  • Otras explicaciones para describir el efecto positivo del H2O2 en la germinación:
  • Cuando la semilla metaboliza al H2O2 genera O2, que es necesario para el proceso respiratorio.
  • El H2O2 (y otras ROS) pueden ayudar a romper cubiertas de semillas, lo que facilita la entrada de agua en la semilla.
  • A menudo, el pericarpo y cubiertas de semillas pueden contener compuestos que inhiben la germinación. Las ROS pueden oxidarlos evitando su función inhibitoria de la germinación.imagen1
    Modelo propuesto sobre la función clave del H2O2 en la germinación y crecimiento temprano en guisante.

El efecto del H2O2 se puede revertir cuando incubamos las semillas en presencia de una mezcla H2O2+ABA.

Efecto del H2O2 en la germinación de semillas de guisante (A, B). En las fotografías C y D se muestra como el ABA reduce el crecimiento de las plántulas tanto en ausencia (C) como en presencia del H2O2 (D)fig-4

Por lo tanto, podemos decir que el H2O2 es un regulador natural de la germinación. Pero lo más importante, esta investigación tiene una aplicación práctica, por ejemplo en viveros, para aumentar el vigor de las semillas y fortalecer las plántulas. Además, se puede usar para estimular la germinación de semillas con bajo vigor.

Para más información:

  • Bailly C., El-Maarouf-Bouteau H. & Corbineau F. (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331, 806-814.
  • Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ., Albacete A., Faize L., Faize M., Pérez-Alfocea F, Hernández J.A. (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Enviroment 33: 981-994.
  • Barba-Espin G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA. Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environm 2011; 34:1907-19.
  • Barba-Espin, G., Hernández JA, Diaz-Vivancos P (2012) Role of H2O2 in pea seed germination. Plant Signaling & Behavior 7, 193–195.
  • Diaz-Vivancos P, Barba-Espín G, Hernández José A (2013) Elucidating hormonal/ROS networks during seed germination: insights and perspectives. Plant Cell Reports 32: 1491-1502 .

 

Comida de ex-becarios del CEBAS - 25 años (12)
José A. Hernández es Investigador Científico del CEBAS-CSIC(Murcia)

 


Deja un comentario

La Fotorrespiración: Un mecanismo de protección para la fotosíntesis en condiciones de estrés ambiental

José A. Hernández Cortés (Grupo de Biotecnología de Frutales, CEBAS-CSIC, Murcia)

La RUBISCO (Ribulosa 1,5 bifosfato Carboxilasa-Oxigenasa) tiene la capacidad de catalizar tanto la carboxilación (ciclo de Calvin-Benson) como la oxigenación de la Ribulosa 1,5-bifosfato (Miziorko y Lorimer 1983). Mientras que la carboxilación de la Ribulosa 1,5-bifosfato da lugar a dos moléculas de 3-fosfoglicerato, la oxigenación produce una molécula de 3-fosfoglicerato y otra de 2-fosfoglicerato. Este proceso de oxigenación de la Ribulosa 1,5 bifosfato se continúa con una serie de reacciones enzimáticas que tienen lugar en tres compartimentos celulares: cloroplastos, peroxisomas y mitocondrias. Por eso no es raro ver a estos tres orgánulos muy próximos el uno del otro en una célula vegetal en hojas (Fig 1). A este conjunto de reacciones se le conoce con el nombre de fotorrrespiración (o ciclo fotosintético C2 de oxidación del carbono) y ocurre fundamentalmente en las plantas denominadas C3 (Ogren 1984).

Fig. 1. Micrografía mostrando la cercanía de cloroplastos (C), peroxisomas (P) y mitocondrias (M) en una célula vegetal de una planta C3. Micrografía tomada en cooperación con el Dr. Enrique Olmos (CEBAS-CSIC)

Fig. 1. Micrografía mostrando la cercanía de cloroplastos (C), peroxisomas (P) y mitocondrias (M) en una célula vegetal de una planta C3. Micrografía tomada en cooperación con el Dr. Enrique Olmos (CEBAS-CSIC)

 

¿Qué funciones tiene la Fotorrespiración

El valor adaptativo de la fotorrespiración todavía es materia de debate para muchos fisiólogos vegetales. La fotorrespiración funciona al mismo tiempo que el Ciclo de Calvin-Benson y contribuye a un amplio rango de procesos en el cloroplasto, desde bio-energéticos hasta del metabolismo del C y de asimilación de N. Por ejemplo, el fosfoglicerato se incorpora directamente al Ciclo de Calvin-Benson, mientras que el fosfoglicolato se hidroliza para producir glicolato, que es metabolizado en mitocondrias y en peroxisomas. En el peroxisoma el glicolato se transforma en glicina, que posteriormente es descarboxilada en la mitocondria para producir serina, NH4+ y NADH:

Glicina serina

El NH4+ difunde hasta el cloroplasto donde se asimila para formar glutamina (a partir de glutamato), mientras que el NADH puede ser oxidado en la cadena de transporte electrónico de la mitocondria. La serina puede difundir al peroxisoma donde es convertida en glicerato, el cual pasa al cloroplasto para ser fosforilado y formar 3-fosfoglicerato que de nuevo entra en el ciclo de Calvin-Benson.

Como funciones más reconocidas para esta ruta cabe destacar:

1.- Se recupera carbono que podría perderse en forma de 2-fosfoglicerato al principio de la ruta. La fotorrespiración recupera un 75% del carbono perdido como glicerato que de nuevo puede entrar al Ciclo de Calvin-Benson. Es decir, 2 moléculas de 2-fosfoglicolato (4 C) que se pierden en la oxigenación de la Rubisco se transforman en una molécula de 3-fosfoglicerato (3 C). Esta conversión requiere la hidrólisis de una molécula de ATP. Además, la descarboxilación de la glicina en la mitocondria libera una molécula de CO2 que podría llegar al cloroplasto y ser fijada por la Rubisco y entrar en el Ciclo de Calvin.

2.- Otra función atribuida a la fotorrespiración es minimizar la foto-inhibición del aparato fotosintético causado por un exceso de poder reductor formado en el cloroplasto en condiciones de estrés ambiental (alta intensidad luminosa, elevada temperatura, déficit hídrico, salinidad, etc…). Cuando los aceptores electrónicos están saturados, el aparato fotosintético usa sustratos alternativos para eliminar el exceso de poder reductor generado por el flujo electrónico. La fotosíntesis en estas condiciones puede dar lugar a la generación de especies reactivas del oxígeno (ROS) que pueden ocasionar daños oxidativos al cloroplasto y a la célula. La fotorrespiración consume  O2 y ATP en el cloroplasto evitando su acumulación. El consumo de O2 en el cloroplasto minimiza su uso como aceptor de electrones en el PSI (reacción de Mehler) o que interaccione con moléculas de clorofila excitadas. Esto minimiza la formación de ROS.

3.- En el estroma del cloroplasto, la glutamina sintetasa y la glutamato sintasa dependiente de ferredoxina (GOGAT) usan el NH4+ y el 2-oxoglutarato, para recuperar el N inicialmente perdido con el glutamato exportado desde el cloroplasto al peroxisoma. En estas reacciones se produce 2 moléculas de Ferredoxina oxidada (Fdox) y dos de ADP, que son empleadas como aceptores electrónicos en la cadena de transporte fotosintético.

En este sentido, la fotorrespiración disipa el exceso de equivalentes reducidos previniendo la sobre-reducción de la cadena de transporte fotosintético.

Cuando se produce un descenso en la relación CO2/O2 intracelular debido al cierre estomático, que se produce en respuesta a estrés hídrico o salino, se suele incrementar el flujo a través de la fotorrespiración.

Fig. 2.- La Fotorrespiración previene la sobre-reducción de la cadena de transporte electrónico en el cloroplasto. La ruta recupera el 75% del C perdido al principio en forma de fosfoglicolato. Además regenera aceptores electrónicos en la cadena de transporte fotosintético (Fdox y ADP) (Imagen tomada de Taiz y Zeiger 2006).

Fig. 2.- La Fotorrespiración previene la sobre-reducción de la cadena de transporte electrónico en el cloroplasto. La ruta recupera el 75% del C perdido al principio en forma de fosfoglicolato. Además regenera aceptores electrónicos en la cadena de transporte fotosintético (Fdox y ADP) (Imagen tomada de Taiz y Zeiger 2006).

 

Producción de H2O2 por la Fotorrespiración

En plantas C3 crecidas en condiciones que favorecen una elevada tasa de oxigenación de la Rubisco, tal como un día muy soleado, un estrés hídrico o salino, la ruta fotorrespiratoria es probablemente el proceso más importante y rápido en generar H2O2.

El H2O2 se forma en el peroxisoma durante la oxidación del glicolato a glioxilato por la enzima glicolato oxidasa. En esta situación, la enzima catalasa es crucial para eliminar el H2O2 generado en la fotorrespiración.glicolato oxidasa catalasa

La importancia de la catalasa para realizar esta función se ha demostrado con plantas mutantes que presentan baja actividad catalasa o empleando la tecnología antisentido (plantas transformadas con un gen que codifica para la catalasa pero insertado a la inversa provocando así la ausencia del correspondiente mRNA, por lo que no se sintetiza la proteína). Además, se ha demostrado que la catalasa es importantísima para mantener el balance redox celular en condiciones de estrés oxidativo (alta intensidad luminosa, salinidad, ozono etc…) (Willekens et al. 1997).

Aunque los peroxisomas contienen todos los componentes del ciclo ascorbato-glutatión (ASC-GSH) (Jiménez et al., 1997) no es capaz de eliminar la gran cantidad de H2O2 generado en el peroxisoma cuando hay un alto flujo fotorrespiratorio. Sin embargo, una de las funciones atribuidas al ciclo ASC-GSH en el peroxisoma es eliminar el H2O2 que podría difundir por la membrana del peroxisoma y evitar un estrés oxidativo en el citosol (Jiménez et al., 1997, 1998).

La catalasa es un hemoproteína con una alta actividad pero con una baja afinidad (alta Km) por el H2O2. Actúa con altas concentraciones de H2O2, mientras que la APX posee una alta afinidad (baja Km), por lo que es muy activa con bajos niveles de H2O2, actuando en la regulación fina de los niveles intracelulares de H2O2. Esto quiere decir que la eliminación de H2O2 por la catalasa requiere altas concentraciones de esta enzima, mientras que la eliminación por APX requiere menos niveles de enzima. Los altos niveles de enzima catalasa requeridos para esta función se reflejan en los grandes cristales de catalasa que se pueden observar en fotografías de peroxisomas tomadas con microscopio electrónico (Fig 3).

Fig 3. Micrografía mostrando los tres orgánulos implicados en la fotorrespiración, donde se aprecia la localización de la catalasa en la matriz del peroxisoma como una inclusión de forma cuadrada. Imagen sacada del libro “Plant Peroxisomes” (Huang et al, 1983). C, cloroplasto, m , mitocondria, P, peroxisoma).

Fig 3. Micrografía mostrando los tres orgánulos implicados en la fotorrespiración, donde se aprecia la localización de la catalasa en la matriz del peroxisoma como una inclusión de forma cuadrada. Imagen sacada del libro “Plant Peroxisomes” (Huang et al, 1983). C, cloroplasto, m , mitocondria, P, peroxisoma).

 

La generación de H2O2 en la fotorrespiración puede incluso ser mayor que el generado en la reacción de Mehler-peroxidasa (Foyer y Noctor 2003) (ver también https://antioxidantsgroup.wordpress.com/2015/10/06/funcion-del-ascorbato-en-la-proteccion-de-la-fotosintesis-i-la-reaccion-de-mehler-y-el-ciclo-agua-agua/).

Existe una fuerte correlación entre  los niveles de actividad catalasa y la tasa fotosintética. La inhibición de la actividad catalasa con el inhibidor aminotriazol hace disminuir la tasa de asimilación de CO2 (Amory et al., 1992). Esto podría ser debido a que el H2O2 es un inhibidor de enzimas que están reguladas por el sistema tiorredoxina como ocurre con algunas enzimas del Ciclo de Calvin-Benson (Gliceraldehido-3-fosfato deshidrogenasa, Fructosa-1,6-bisfosfatasa, Sedoheptulosa-1,7-bisfosfatasa, Fosforibuloquinasa….) (Jacquot et al (1993).

La inhibición de la actividad catalasa puede producirse en condiciones de estrés que afecten a la síntesis de proteínas (salinidad, estrés hídrico, altas y bajas temperaturas etc….) (Vock y Feierabend 1989). Esto tendría un efecto inmediato de acumulación de H2O2 en el peroxisoma, que podría difundir a través de la membrana de este orgánulo y afectar a otros compartimentos celulares.

Conclusiones

Como hemos comentado anteriormente, las funciones adscritas a la fotorrespiración sigue siendo un tema de debate. Cuando se describió este conjunto de reacciones no se le pudo asignar ninguna función útil a la fotorrespiración por diferentes motivos (ver Figura 4):

1.- Se pierde ribulosa-1,5-bisfosfato para el ciclo de Calvin-Benson

2.-La fijación de CO2 se invierte: se consume O2 y se libera CO2 en presencia de luz (de ahí el  nombre de fotorrespiración).

3.-Sólo una parte del carbono se recicla

4.- Gasto de ATP de forma innecesaria.

Figura 4.- Flujo del carbono y del oxígeno en el ciclo de Calvin y en la fotorrespiración. (Imagen tomada de Taiz y Zeiger 2006).

Figura 4.- Flujo del carbono y del oxígeno en el ciclo de Calvin y en la fotorrespiración. (Imagen tomada de Taiz y Zeiger 2006).

 

Se consideró que la fotorrespiración era una ruta metabólica residual, ineficaz e incluso inútil. Era como si la fotorrespiración deshiciera lo realizado por la fotosíntesis. Pero investigaciones posteriores pusieron de manifiesto que tanto la fotorrespiración como la fotoinhibición (interrupción controlada del PS II) son muy importantes para la regulación de la fotosíntesis. De hecho, mutantes incapaces de hacer fotorrespiración no son capaces de crecer en  condiciones ambientales normales, o la supresión del proceso por manipulación genética produce desequilibrios en la planta.

Por tanto, con el paso del tiempo diferentes investigaciones han ido atribuyendo a la fotorrespiración un efecto protector para el proceso de fotosíntesis. Por ejemplo, en situaciones donde la concentración del CO2 es baja. Esta situación ocurre cuando las plantas están creciendo en condiciones de alta intensidad luminosa, cuando hay limitaciones hídricas, salinidad etc… En tales situaciones, un descenso en el proceso de asimilación de CO2 no permitiría una regeneración de los aceptores de electrones en la cadena de transporte fotosintético, especialmente NADP+ y ADP, lo que favorecería la generación de ROS.  En estas condiciones, la fotorrespiración es un sumidero alternativo de energía o de poder reductor (Arellano y De la Rivas 2006). Consume, como hemos visto, O2 y ATP en el cloroplasto evitando su acumulación. El consumo de O2 en el cloroplasto minimiza su uso como aceptor de electrones en el PS I (reacción de Mehler; ver también https://cienciacebas.wordpress.com/2015/10/06/funcion-del-ascorbato-en-la-proteccion-de-la-fotosintesis-i-la-reaccion-de-mehler-y-el-ciclo-agua-agua/) o que interaccione con moléculas de clorofila excitadas. Esto minimiza la formación de ROS. Además, permite un flujo electrónico que favorece la recuperación de C para el Ciclo de Calvin-Benson y de aceptores electrónicos (Fdox y ADP).

Es cierto que la fotorrespiración reduce la eficiencia fotosintética (Arellano y De la Rivas 2006), pero ofrece a cambio un mecanismo de fotoprotección en condiciones adversas que opera junto a otros mecanismos de protección, como el ciclo agua-agua y el ciclo de las xantofilas (ver también https://antioxidantsgroup.wordpress.com/2015/10/06/funcion-del-ascorbato-en-la-proteccion-de-la-fotosintesis-i-la-reaccion-de-mehler-y-el-ciclo-agua-agua/ y https://antioxidantsgroup.wordpress.com/2015/10/13/funcion-del-ascorbato-en-la-proteccion-de-la-fotosintesis-ii-los-carotenoides-y-el-ciclo-de-las-xantofilas/).

En consequencia, la Rubisco, enzima sumidero de CO2 o de O2 garantiza un consumo de ATP y NADPH bien mediante el ciclo fotorreductor del carbono (ciclo de Calvin-Benson) o mediante el fotooxidativo (fotorrespiración) (Arellano y De las Rivas 2006).

 

Bibliografía

Arellano y De las Rivas (2006) Investigación y Ciencia Marzo, pp. 42-50.

Amory et al (1992) Plant Cell Environm 15: 655-663.

Foyer y Noctor (2003) Physiol Plant 119: 355-364.

Huang AHC, Trelease RN, Moore TS Jr (1983) Plant Peroxisomes. Academic Press Inc., New York

Jacquot et al (1993) New Phytol 136: 543-570.

Jiménez et al (1997) Plant Physiol 114: 275-284

Miziorko y Lorimer (1983) Ann. Rev. Biochem. 52:507-535.

Ogren (1984) Ann. Rev. Plant Physiol. 35:415-422.

Taiz y Zieger (2006) Fisiología Vegetal, tercera Edición. Servicio de Publicaciones de la Universidad Jaime I, Castellón (España).

Vock y Feierabend (1989) Plant Cell Environm 12:701-712.

Willekens et al (1997) EMBO J. 16 : 4806-4816.

JA Hernandez

José A. Hernández Cortés es Investigador Científico en el CEBAS-CSIC


2 comentarios

FUNCION DEL ASCORBATO EN LA PROTECCIÓN DE LA FOTOSÍNTESIS: (II) Los carotenoides y el ciclo de las Xantofilas

José A. Hernández Cortés y Pedro Díaz Vivancos (Grupo de Biotecnología de Frutales, CEBAS-CSIC)

Los carotenoides, además de servir como pigmentos accesorios, cumplen una función esencial en la fotoprotección de la maquinaria fotosintética. Los mecanismos de fotoprotección actúan como válvulas de seguridad, eliminando o liberando el exceso de energía antes de que pueda dañar a la planta.

Cuando la energía almacenada en las moléculas de clorofila en estado excitado se disipa rápidamente (mediante transferencia de excitación o fotoquímica) se dice que ese estado excitado está capturado (en inglés “quenched”) (Fig. 1). En castellano, el vocablo quenched significa apagado, aplacado, sofocado, calmado, extinguido, mitigado….. Si el estado de excitación de las clorofilas no es extinguido mediante transferencia fotoquímica (a través de la cadena de electrones) puede reaccionar con el oxígeno molecular (O2 ) y formar un estado excitado de esta molécula denominado oxígeno singlete (1O2) (Fig. 1). Esta forma activada del O2 puede reaccionar con cualquier componente celular, especialmente con los lípidos de las membranas celulares (Taiz y Zeiger 2010).

Los carotenoides ejercen su acción fotoprotectora mediante la captura del estado excitado de las clorofilas. El estado excitado de los carotenoides no tiene suficiente energía como para transferirla al O2 (por lo tanto no se forma 1O2), de modo que este estado excitado de los carotenoides decae hasta su estado fundamental perdiendo la energía en forma de calor (Fig. 1).

Fig 1 para ciclo X

Fig. 1.-  A: Condiciones donde toda la energía absorbida por la clorofila (Chl) es usada para la fotosíntesis. B: Condiciones de estrés lumínico donde sólo una parte de la energía absorbida por la Chl es usada para hacer fotosíntesis. En este último caso, para te la energía de excitación puede ser transferida al O2 para formar oxígeno singlete (1O2). El exceso de energía puede ser disipado de una forma segura en procesos fotoprotectivos en presencia de Zeatina a pH ácido en el interior de las membranas de los tilacoides con el fin de prevenir la formación de 1O2 . En este caso, la energía de la Chl excitada se puede usar para procesos fotoquímicos o bien se puede perder de forma segura en forma de calor. Modificado a partir de Demming-Adams y Adams (1996).

 

 

Se denomina quenching no fotoquímico (NPQ) a la captura de la fluorescencia de las clorofilas por procesos diferentes a los fotoquímicos. Gracias a los procesos de NPQ, una fracción importante de la energía de excitación de los sistemas antena causado por un estrés lumínico es capturado (quenched) y convertido en calor (Baker 2008). En este sentido, el NPQ está implicado en los mecanismos de protección de la maquinaria fotosintética cuando se produce una sobreexcitación, protegiendo de los posibles daños derivados. Los mecanismos moleculares del NPQ no están del todo dilucidados y se sugiere que hay varios procesos de quenching. El pH del lumen tilacoidal y el estado de agregación de los complejos antena son factores importantes. Además, se sabe que tres carotenoides, denominados xantofilas, están implicados en este mecanismo de NPQ: La violaxantina (V), la anteroxantina (A) y la zeaxantina (Z) (Taiz y Zeiger 2010).

En condiciones de alta iluminación (o debido a otro tipo de estrés que cause una limitación en la fijación de CO2 como la sequía o salinidad), la V es convertida a Z, pasando por el intermedio A, por acción de la enzima Violaxantina de-epoxidasa (VDE) en una reacción dependiente de ascorbato (ASC). A este conjunto de reacciones se le conoce como Ciclo de las Xantofilas (Fig. 2), implicado en la disipación del exceso de energía luminosa en forma de calor en las hojas.

Cuando el estrés desaparece o se reduce, el proceso se revierte (paso de Z a A). En este proceso se consume NADPH, generando NADP+, el aceptor final de electrones de la cadena de transporte. Por lo tanto, volvemos a encontrarnos con el ASC mediando una función protectora de la maquinaria fotosintética.

La unión de los protones y de la Z a las proteínas de las antenas colectoras de luz en los tilacoides, causan cambios conformacionales que conducen a la captura de energía y a la disipación en forma de calor (Demming-Adam y Adams 1992).

 

La deficiencia de ASC limita el ciclo de las Xantofilas

Como hemos comentado anteriormente, en respuesta a una alta intensidad luminosa (y a otros estreses, que pueden ir combinados), las plantas ponen en marcha mecanismos que les permiten disipar el exceso de luz absorbida en forma de calor. Uno de estos mecanismos es el NPQ, que requiere de la conversión de V a Z, por acción de la enzima VDE. Esta enzima se localiza en el lumen de los tilacoides, se activa a pH ácido (aprox 6.5, con una actividad máxima a pH 5) y necesita ASC como poder reductor (donador de electrones). Para comprobar la importancia fisiológica del ASC para el proceso de NPQ se han realizado experimentos empleando mutantes de Arabidopsis que contienen bajos niveles de ASC, como el mutante vtc, que contiene un 25% de los niveles de ASC que contienen las plantas silvestres. Cuando las plantas se crecen en presencia de una alta intensidad luminosa (1500 µmoles fotones m-2 s-1) los mutantes presentaron valores más bajos de NPQ, pero valores similares de ETR (tasa de transporte electrónico). Este menor NPQ era paralelo a una menor tasa de conversión de A a Z medido en tilacoides aislados. Cuando se aplicaba ASC a las hojas o a preparaciones de tilacoides se rescataba el fenotipo mutante, ya que se conseguía un aumento en NPQ y en los niveles de Z estableciéndose una unión clara entre ASC, Z y NPQ (Müller-Moulé et al., 2002).

 

Fig 2. Ciclo de las Xantofilas. Conversión de violaxantina (V) en zeaxantina (Z) en condiciones de estrés lumínico (o por efecto de otro tipo de estrés)  en una reacción dependiente de ASC. Cuando el estrés cesa, el paso de Z a V requiere NADPH generando NADP+, el aceptor final de la cadena de transporte de electrones.

Fig 2. Ciclo de las Xantofilas. Conversión de violaxantina (V) en zeaxantina (Z) en condiciones de estrés lumínico (o por efecto de otro tipo de estrés) en una reacción dependiente de ASC. Cuando el estrés cesa, el paso de Z a V requiere NADPH generando NADP+, el aceptor final de la cadena de transporte de electrones.

 

La susceptibilidad a estrés oxidativo mostrado por los mutantes deficientes en ASC se puede explicar no sólo por su reducida capacidad antioxidante sino también por presentar un ciclo de las xantofilas menos activo, reflejado por reducidos niveles de NPQ.

La relación ASC-NPQ también se ha demostrado empleando mutantes que sobreproducen ASC (mutante miox4), que presentan altos valores de NPQ (Tòth et al., 2011). Por otro lado, se ha demostrado también una función importante de la enzima deshidroascorbato reductasa (DHAR, enzima que recicla el ASC) en el proceso de NPQ, ya que la supresión de la expresión de esta enzima daba lugar a bajos valores de NPQ y a un aumento de los contenidos de especies reactivas del oxígeno (ROS) con tratamientos de estrés lumínico (Chen y Gallie 2008).

Conclusiones

El ciclo de las Xantofilas constituye un mecanismo de defensa para proteger a la fotosíntesis (y por tanto al cloroplasto) que permite la eliminación del exceso de energía en forma de calor de forma segura. La acción de este ciclo previene la formación de 1O2 evitando daños oxidativos. Como podemos comprobar, de nuevo el ASC es una pieza importante en el mecanismo de acción de este ciclo, ya que en su ausencia se produce un descenso en los procesos de quenching no fotoquímico (NPQ).

Referencias

  • Baker NR (2008) Annu. Rev. Plant Biol. 59: 89-113.
  • Chen y Gallie (2008) J. Biol. Chem. 283: 21347-21361.
  • Demming-Adam and Adams (1992) Annu. Rev. Plant Physiol Plant Mol. Biol. 43: 599-626.
  • Demming-Adam and Adams (1996) Trend in Plant Sci 1: 21-26
  • Müller-Moulé et al (2002) Plant Physiol 128: 970-977
  • Taiz y Zieger (2010) Plant Physiology, Fifth edition. Sinauer Associates, Inc. Sunderland, MA, USA. ISBN 978-0-87893-866-7.
  • Tôth et al (2013) Physiol Plant 148: 161-175.


2 comentarios

FUNCION DEL ASCORBATO EN LA PROTECCIÓN DE LA FOTOSÍNTESIS: (I) La reacción de Mehler y el ciclo agua-agua

José A. Hernández Cortés y Pedro Díaz-Vivancos (Grupo de Biotecnología de Frutales, CEBAS-CSIC)

El ascorbato (ASC, también llamado Vitamina C) es una molécula multifuncional en las plantas. La mayoría de las funciones biológicas del ASC derivan de su capacidad para actuar como un agente reductor (es decir, que cede electrones a otras moléculas). Esta capacidad hace del ASC una molécula antioxidante muy eficaz.

Además de su papel como antioxidante, el ASC puede participar en otras funciones, como en el desarrollo celular, en la síntesis de la pared celular, modula la síntesis de algunas fitohormonas (ácido abcísico, giberelinas, etileno, ácido salicílico), participa en el control del movimiento de los estomas (https://cienciacebas.wordpress.com/2013/12/12/regulacion-del-cierre-estomatico-una-funcion-representada-por-varios-actores/), interviene en la acumulación de antocianos durante la aclimatación a alta intensidad luminosa, etc…

Sin embargo, en esta entrada vamos a centrarnos en la función(es) del ASC en el cloroplasto como un protector de la maquinaria fotosintética.

Función antioxidante del ASC en el estroma del cloroplasto

El ASC, junto con el glutatión (https://cienciacebas.wordpress.com/2013/04/03/glutation-una-molecula-para-todo/), participa en la eliminación de especies reactivas del oxígeno (ROS) en el denominado ciclo agua-agua (Asada 1999). Este ciclo comienza con la denominada reacción de Mehler. La reducción del oxígeno molecular (O2) hasta superóxido y H2O2 por los electrones de la cadena de transporte electrónico fotosintético en el PSI se denomina “Reacción de Mehler” (Mehler 1951) (Fig. 1).

Fig. 1. Reacción de Mheler. PS, fotosistema; SOD, superóxido dismutasa.

Fig. 1. Reacción de Mehler. PS, fotosistema; SOD, superóxido dismutasa.

Años más tarde, el profesor Kozy Asada describió el denominado ciclo agua-agua, esto es la fotorreducción del O2 hasta agua en el PSI empleando los electrones procedentes de la fotólisis del agua en el PSII (Asada, 1999, 2006). Este ciclo incluye la reacción de Mehler, es decir, comienza con la fotólisis de la molécula de agua en el PSII, la fotorreducción del O2 para producir radicales superóxido (O2.- ) en el PSI y la dismutación del O2.- hasta H2O2 por acción de la isoenzima Cu,Zn-SOD unida a tilacoides.

El ciclo agua-agua continúa con la reducción del H2O2 hasta agua por la acción de la enzima ascorbato peroxidasa (APX). Esta reacción puede ocurrir tanto en el tilacoide como en el estroma, ya que parte del H2O2 producido puede difundir al estroma del cloroplasto. En esta reacción, la APX usa el ASC como donador de electrones para reducir el H2O2 hasta agua generando radicales monodeshidroascorbate (MDHA).APX

A continuación, el MDHA generado tiene que ser reducido para regenerar el ASC. Esta reacción puede ocurrir de dos formas:

Bien puede ocurrir de forma espontánea vía ferredoxina reducida (Fdred) en el PSI,

Mono espontanea

o bien mediante la reacción de la enzima monodeshidroascorbato reductasa (MDHAR) en el estroma del cloroplasto:

MDHAR

Además, el MDHA puede desproporcionar directamente para producir ASC y deshidroascorbato (DHA), que puede difundir al estroma, donde es reducido hasta ASC por acción de la enzima deshidroascorbato reductasa (DHAR), en una reacción dependiente de GSH (glutatión reducido) generando glutatión oxidado (GSSG). A continuación el GSH es regenerado a partir de GSSG por acción de la enzima glutatión reductasa (GR) que emplea NADPH como poder reductor:

DHAR y GR

Como podemos ver en estas reacciones, el ciclo agua-agua proporciona aceptores electrónicos para el PSI, es decir, Fdox y NADP+.

Fig. 2 Esquema del Ciclo Agua-agua (desarrollado a partir del ciclo agua-agua descrito por Asada (1999).

Fig. 2 Esquema del Ciclo Agua-agua (desarrollado a partir del ciclo agua-agua descrito por Asada (1999).

En el esquema del ciclo agua-agua (flechas azul marino) podemos observar que la mitad de los electrones derivados de la fotólisis del agua en el PSII son utilizados para la reducción del O2 hasta O2.-, mientras que la otra mitad se emplean para regenerar las moléculas reductoras (el ASC) que se emplean para reducir el H2O2 hasta agua.

Funciones de la Reacción de Mehler y del ciclo agua-agua

La generación de ROS en el cloroplasto está influida por factores fisiológicos y ambientales, de modo que esta tasa aumenta cuando el flujo de intensidad luminosa está en exceso del requerido para la fijación de CO2 (Asada 1999, 2006). La fotoproducción y eliminación de ROS no sólo protege al cloroplasto de los efectos dañinos de dichos ROS sino que también actúa como una válvula de escape para el exceso de fotones. En este sentido el ciclo agua-agua cumple una serie de funciones de protección:

 

1.- Ajuste de la relación ATP/NADPH

El ciclo agua-agua (incluyendo la reacción de Mehler) proporciona un flujo lineal de electrones favoreciendo la generación de un gradiente de protones a través de la membrana del tilacoide, lo que permite la síntesis de ATP que no es consumido en el ciclo agua-agua (a esta producción de ATP se le denomina fotofosforilación pseudocíclica). Por lo tanto, permite un aumento del ratio ATP/NADPH en el cloroplasto. Una alta relación ATP/NADPH favorece la ruta fotorrespiratoria, por lo que podemos decir que el ciclo agua-agua aporta ATP adicional para la fotorrespiración.

2.-Protección frente a las ROS

Si el ciclo no fuese activo, tanto O2.- como H2O2 difundirían al estroma y oxidarían moléculas diana en el cloroplasto. En presencia de metales de transición (Fe, Cu), liberados de las proteínas, se podría catalizar la generación de radicales hidroxilo (.OH). La acumulación de H2O2 podría inhibir la APX en ausencia de ASC. La fijación de CO2 se inhibe hasta un 50% en presencia de 10 µM de H2O2 (Kaiser 1976). Además, el H2O2 es un inhibidor de las enzimas CuZn-SOD, Fructosa 1,6-bifosfatasa; Ribulosa 5 fosfato Kinasa, gliceraldehído-3-P- deshidrogenasa, sedoheptulosa 1,7-bisfosfatasa.

El radical O2.- inhibe enzimas que contiene grupos 4Fe-4S (como aconitasa o 6-fosfogluconato dehidratasa), mientras que los radicales .OH inhiben las enzimas glutamato sintasa y Rubisco.

3.- Disipación del exceso de fotones en condiciones de estrés

El ciclo agua-agua induce y mantiene la denominada “down-regulation” del PS II (una bajada de la actividad del PSII) mediante la generación de un gradiente de protones. Este gradiente de protones es importante para la formación de zeatina en el lumen de los tilacoides (este mecanismo lo veremos en una siguiente entrada “ciclo de las xantofilas” en el que el ASC tiene también una función importante).

Además, el ciclo puede disipar el exceso de fotones utilizando el O2 como aceptor de electrones generando H2O sin producirse la liberación de O2.- ni de H2O2 incluso si los aceptores electrónicos fisiológicos no están disponibles.

 

CONCLUSIONES

  • El ASC tiene un papel fundamental en la eliminación del H2O2 generado en la reacción de Mehler.
  • El ciclo Agua-Agua regenera aceptores electrónicos cono la Fdox y NADP+. Este último es el aceptor final preferido en la cadena de transporte.
  • El ciclo Agua-Agua genera ATP que puede ser utilizado en el Ciclo de Calvin-Benson o en la ruta fotorrespiratoria.
  • El ciclo Agua-Agua actúa como una válvula de escape permitiendo disipar el exceso de fotones en condiciones de estrés ambiental.

 

Referencias

Asada K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 50:601-639.

Asada K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396.

Kaiser (1976) Biochem Biophys Acta 440: 476-482.

Mehler AH (1951) Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch Biochem Biophys. 33:65-77.